
Editor
ROBERT M. McMEEKING

Assistant to the Editor
LIZ MONTANA

APPLIED MECHANICS DIVISION
Executive Committee
�Chair� D. J. INMAN
�Vice Chair� Z. SUO

�Past Chair� K. RAVI-CHANDAR
�Secretary� K. M. LIECHTI

�Program Chair� T. E. TEZDUYAR
�Program Vice Chair� A. J. ROSAKIS

Associate Editors
Y. N. ABOUSLEIMAN „2011…

M. R. BEGLEY „2011…
J. CAO „2011…

H. ESPINOSA „2010…
K. GARIKIPATI „2010…
N. GHADDAR „2009…

S. GOVINDJEE „2009…
Y. Y. HUANG „2011…

S. KRISHNASWAMY „2011…
K. M. LIECHTI „2009…

A. M. MANIATTY „2010…
A. MASUD „2009…

I. MEZIC „2009…
M. P. MIGNOLET „2009…
S. MUKHERJEE „2009…

M. OSTOJA-STARZEWSKI „2009…
A. RAMAN „2010…

T. W. SHIELD „2011…
N. S. NAMACHCHIVAYA „2009…

Z. SUO „2009…
A. WAAS „2010…

W.-C. WIE „2010…
B. A. YOUNIS „2009…

M. AMABILI „2011…
N. AUBRY „2011…

Z. BAZANT „2011…
V. DESHPANDE „2011…

W. SCHERZINGER „2011…
F. UDWADIA „2011…

PUBLICATIONS COMMITTEE
Chair, BAHRAM RAVANI

OFFICERS OF THE ASME
President, THOMAS M. BARLOW

Executive Director, THOMAS G. LOUGHLIN
Treasurer, T. PESTORIUS

PUBLISHING STAFF
Managing Director, Publishing

PHILIP DI VIETRO
Manager, Journals
COLIN MCATEER

Production Coordinator
JUDITH SIERANT

Transactions of the ASME, Journal of Applied
Mechanics �ISSN 0021-8936� is published bimonthly

�Jan., Mar., May, July, Sept., Nov.� by
The American Society of Mechanical Engineers,

Three Park Avenue, New York, NY 10016.
Periodicals postage paid at New York, NY and additional

mailing offices. POSTMASTER: Send address changes to
Transactions of the ASME, Journal of Applied Mechanics,

c/o THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS,
22 Law Drive, Box 2300, Fairfield, NJ 07007-2300.

CHANGES OF ADDRESS must be received at Society
headquarters seven weeks before they are to be effective.

Please send old label and new address.
STATEMENT from By-Laws. The Society shall not be

responsible for statements or opinions advanced in papers or
printed in its publications �B7.1, Para. 3�.

COPYRIGHT © 2009 by The American Society of Mechanical
Engineers. For authorization to photocopy material for

internal or personal use under those circumstances not falling
within the fair use provisions of the Copyright Act, contact

the Copyright Clearance Center �CCC�, 222 Rosewood Drive,
Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Request for special permission or bulk copying should
be addressed to Reprints/Permission Department.

Canadian Goods & Services Tax Registration #126148048.

RESEARCH PAPERS
011001 Blocking in the Rotating Axial Flow in a Corotating Flexible Shell

F. Gosselin and M. P. Païdoussis

011002 Dynamic Variational-Asymptotic Procedure for Laminated Composite
Shells—Part I: Low-Frequency Vibration Analysis

Chang-Yong Lee and Dewey H. Hodges

011003 Dynamic Variational-Asymptotic Procedure for Laminated Composite
Shells—Part II: High-Frequency Vibration Analysis

Chang-Yong Lee and Dewey H. Hodges

011004 M-Integral for Calculating Intensity Factors of Cracked Piezoelectric
Materials Using the Exact Boundary Conditions

Yael Motola and Leslie Banks-Sills

011005 Analytical Modeling and Vibration Analysis of Partially Cracked
Rectangular Plates With Different Boundary Conditions and Loading

Asif Israr, Matthew P. Cartmell, Emil Manoach, Irina Trendafilova,
Wiesław Ostachowicz, Marek Krawczuk, and Arkadiusz Żak
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Blocking in the Rotating Axial
Flow in a Corotating Flexible
Shell
By coupling the Donnell–Mushtari shell equations to an analytical inviscid fluid solution,
the linear dynamics of a rotating cylindrical shell with a corotating axial fluid flow is
studied. Previously discovered mathematical singularities in the flow solution are ex-
plained here by the physical phenomenon of blocking. From a reference frame moving
with the traveling waves in the shell wall, the flow is identical to the flow in a rigid
varicose tube. When the ratio of rotation rate to flow velocity approaches a critical value,
the phenomenon of blocking creates a stagnation region between the humps of the wall.
Since the linear model cannot account for this phenomenon, the solution blows up.
�DOI: 10.1115/1.2998486�

1 Introduction

The present study considers the stability of a rotating cylindri-
cal shell containing a corotating axial flow. The system can be
thought of as a long thin-walled pipe carrying an internal axial
flow while the whole is in a frame of reference rotating at a
prescribed rate. Only a handful of studies have been conducted on
the problem of shells subjected to a swirling �helical� flow. Paï-
doussis �1� offered a review of the work performed in this field
and on related problems.

Srinivasan �2� undertook the first study that added the complex-
ity of rotation to the problem of a cylindrical shell subjected to
axial flow. In this study, motivated by applications involving
swirling flow in multispool aircraft jet engines, the stability of a
thin infinitely long cylindrical shell exposed to an outer inviscid
helical flow is investigated. Through a numerical frequency analy-
sis, it is found that when the critical velocity is reached, the sys-
tem loses stability by coupled-mode flutter, where the forward and
the backward traveling waves coalesce. These results were later
confirmed experimentally by Dowell et al. �3� who measured flut-
ter frequencies and critical rotation rates in fair agreement with
the theoretical predictions of Srinivasan.

This fluid-structure interaction problem is obviously related to
the research done on the stability of rotating fluids. Rayleigh �4�
studied the stability of the Couette flow, i.e., the steady azimuthal
flow of a fluid between two rotating coaxial cylinders. His analy-
sis led him to propose a general stability criterion, now named
after him, which states that a necessary and sufficient condition
for stability is that the circulation K=V�r always increases in
magnitude with the radius r. This implies that a solid body rota-
tion flow is stable. Rayleigh noted that the stability of a rotating
flow with no axial component between two concentric cylinders is
analogous to that of a density-stratified fluid at rest under the
action of gravity, so long as only axisymmetric perturbations are
considered. Building on this observation, Howard and Gupta �5�
suggested that, when an axial flow is also present, the effect of the
swirl component may be analogous to the effect of density strati-
fication on a parallel shear flow. From this analogy, they defined a
“Richardson number” to propose a sufficient condition for the
stability of swirling flows to axisymmetric perturbations. Accord-

ing to this criterion, a plug flow subjected to a solid body rotation
is stable to infinitesimal axisymmetric disturbances.

By considering any type of perturbations �not only Fourier
type� in a finite-length system, Wang and Rusak �6� showed that
flows, which were predicted to be stable to axisymmetric pertur-
bations by Howard and Gupta �5�, could, at large enough rotation
rates, be unstable and responsible for the phenomenon of vortex
breakdown. This type of instability is not considered in the present
work, as we study an infinitely long system. Moreover, it is un-
derstood that in an exhaustive study of the stability of the coupled
shell-flow system, both fluid-only and fluid-structure modes of
instability should be considered. On the other hand, as the purpose
of the current paper is to explain a weakness in the current fluid-
structure interaction model, we will focus solely on the coupled
fluid-structure modes and leave out the instability modes which
are independent of shell-wall deformations.

Chow �7� investigated the swirling inviscid and incompressible
fluid flow in cylindrical tubes with axisymmetric deformations.
The flow in this varicose-shaped tube is characterized by the
Rossby number

Ro =
U

2R�
�1�

where U is the plug flow velocity in the tube, R is the tube diam-
eter, and � is the constant rate of swirl of the flow. Chow �7�
found that for flows with certain values of Rossby number, the
flow near the wall is “blocked.” At those critical values of the
Rossby number, no flow solution can be found to satisfy the linear
boundary conditions. What happens physically is that the fluid
cannot go around the humps on the wall and becomes stagnant in
that region, hence effectively reducing the cross section of the
tube. This phenomenon of blocking is characteristic of stratified
fluid flow over obstacles and is discussed in detail, along with
analogies to a rotating fluid, by Yih �8�. To visualize the flow
pattern when blocking occurs, Chow �7� studied the flow in a
convergent-divergent nozzle with a wall shape determined by ring
vortices. The streamlines and the flow velocity profile obtained by
Chow �7� at the first critical Rossby number are shown in Fig. 1.
At a critical Rossby number, the streamlines become parallel with
the pipe wall, and the fluid near the wall is stagnant. The findings
of Chow �7� are of importance to the present paper because the
same flow model is used by Lai and Chow �9� to study the stabil-
ity of a rotating thin elastic tube containing fluid flow.

Lai and Chow �9� studied a problem related to “the thrust
chamber and the pipelines in the liquid propellant feed system of
a spinning rocket.” They investigated the stability of a rotating

1Corresponding author.
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thin shell containing inviscid fluid flow where both the fluid and
the shell rotate about the axis of the cylindrical shell at a given
constant rate. The linear Donnell shell theory was modified to
account for the solid body rotation and was coupled to the fluid
equations, similar in essence to those derived by Chow �7� for
swirling flow in a varicose tube. It was found that the critical flow
rate in the shell decreases with increasing angular velocity. Using
essentially the same method of solution as Lai and Chow �9�,
Chen and Bert �10� studied the dynamics of a stationary shell
carrying a rotating flow; the latter study differs from Lai and
Chow’s only in the fact that the shell does not rotate. Once again,
it is found that rotation severely decreases the stability of the
fluid-shell system.

The present paper is specifically concerned with an issue raised
by Cortelezzi et al. �11�. They found it impossible to reproduce
the results of Lai and Chow �9� when rotation is present. This led
them to question the validity of Lai and Chow’s results and also
those of Chen and Bert �10� who used the same flow model.
Without rotation, the solution for pressure in the fluid is continu-
ous, but in the presence of rotation, the solution is not bounded in
particular regions of the parameter space. Cortelezzi et al. math-
ematically pin-pointed the problem in obtaining the eigenfrequen-
cies of the coupled system to the presence of an infinite number of
singularities in the flow solution. The question incidentally raised
is then: what is the physical meaning of these mathematical sin-
gularities?

By showing that the flow in the spinning shell behaves the same
way as in the rigid varicose tube of Chow �7�, this paper estab-
lishes the link between the mathematical singularities and the
physical phenomenon of blocking. This paper is organized as fol-
lows. In Sec. 2, the analytical model of Lai and Chow �9� is
recalled and the similarities to the flow solution of Chow �7� are
highlighted. In Sec. 3, we investigate the dynamics of a nonrotat-
ing shell conveying purely axial flow. We also analyze how the
solution breaks down when rotation is present and how this break-
down is related to the physical phenomenon of blocking. The
main findings of this paper are summarized in Sec. 4.

2 Analysis
We revisit the model developed by Lai and Chow �9� for a

rotating shell containing a corotating axial flow. We consider a
cylindrical shell of radius R, thickness h�R, and of infinite
length, as shown in Fig. 2. The shell contains an axial incompress-
ible inviscid flow of velocity U, constant across the inner section
of the shell. The whole system is in a frame of reference rotating
about the axis of the cylinder at rate �. The axial, circumferential,
and radial time-dependent deformations of the shell are denoted
by u, v, and w, respectively. Let �s be the density, E the elastic
modulus, and � the Poisson ratio of the shell material. The motion
of the shell is governed by the linear Donnell–Mushtari shell
equations �see Ref. �12�� in the rotating frame of reference, i.e.,

LD�u

v

w
� =

�2

R2� �2u/�t2

�2v/�t2 − �2v + 2���w/�t�
2���v/�t� + �2w − �2w/�t2 + pw/�sh

� �2�

where LD is the linear Donnell–Mushtari shell operator given in
the Appendix, pw is the fluid pressure acting on the shell wall, and

�=R��s�1−�2� /E is the structural timescale. In the reference
frame rotating at rate � about e�x, the Euler equations in cylindri-
cal scalar form, together with the continuity equation, govern the
flow inside the shell

DVx

Dt
= −

1

�

�p

�x
�3�

DVr

Dt
− 2�V� −

V�
2

r
− �2r = −

1

�

�p

�r
�4�

DV�

Dt
+ 2�Vr +

VrV�

r
= −

1

�

1

r

�p

��
�5�

�Vx

�x
+

1

r

�

�r
�rVr� +

1

r

�V�

��
= 0 �6�

in which � is the fluid density, Vx, Vr, and V� are the fluid velocity
components, and D /Dt is the material derivative in cylindrical
coordinates, i.e.,

D

Dt
=

�

�t
+ Vr

�

�r
+

V�

r

�

��
+ Vx

�

�x

To be consistent with the derivation of the linear Donnell–
Mushtari shell equations, in treating the interface between the
shell wall and the flow we assume that the normal to the unde-

Fig. 1 Streamlines and velocity profile showing the flow pattern of block-
ing encountered at the first critical Rossby number in a swirling axisymmet-
ric flow in a convergent-divergent nozzle. Figure reproduced from Ref. †7‡.
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formed shell surface remains unchanged as the shell deforms. This
assumption has as a consequence such that only the radial dis-
placement w �not the circumferential and the axial displacements
u and v� of the shell influences the flow, since an inviscid fluid
cannot transmit shear. We impose a no-penetration condition at the
wall by requiring that the radial velocity of the flow matches the
radial velocity of the shell wall, i.e.,

Vr�wall = 	Dw

Dt
	

wall
= 
 �w

�t
+ Vr

�w

�r
+

V�

r

�w

��
+ Vx

�w

�x
�

wall

�7�

We apply a perturbation scheme with a traveling-wave solution of
the form

p = P�r� + p̂�r�ei� �8�

�Vx,Vr,V� = �U,0,0 + �v̂x, v̂r, v̂�ei� �9�

� = �t − kx − n� �10�

where �, k, and n are the complex frequency, axial wave number,
and circumferential wave number of the system, respectively, and
i=�−1. Upon substituting Eqs. �8� and �9� into Eq. �4� and keep-
ing only leading order terms, the r-momentum equation is inte-
grated to find the steady pressure distribution

P�r� = PR −
1

2
��2�1 − r2� �11�

where PR is the constant pressure at the shell-fluid interface. This
term leads to a static deformation and a stiffening of the shell. We
take PR=0, as in this linear analysis the static deformation and the
stiffening due to pressurization can be modeled by simply using
different effective shell properties. Subsequently, the perturbation
solutions �Eqs. �8� and �9�� are substituted into the partial differ-
ential equations �3�–�6� while making use of Eq. �11� to remove
the steady pressure term. By combining the partial differential
equations, one can obtain a second-order differential equation of
the perturbation pressure

r2�2p̂

�r2 + r
� p̂

�r
+ �r2k2�	2 − 1� − n2�p̂ = 0 �12�

	 =
2�

kU − �
�13�

Equation �12� is a variant of Bessel’s equation. Its solution takes
different forms depending on the values of 	2 and n. The pertur-
bation flow is related to the deformation of the shell through the
linearized impermeability condition, which is obtained via a Tay-
lor expansion of Eq. �7� about the undeformed wall position and
keeping only first-order terms

vr�r=R = i�� − kU�ŵei� �14�

where the shell deformation takes the same traveling-wave form
as in Eqs. �8� and �9�

�u,v,w = �û, v̂,ŵei� �15�

Making use of Eqs. �14� and �15�, and solving Eq. �12�, the
corresponding perturbation pressure solutions are as follows:

For 	2
1,

p̂ =
�ŵR�� − kU�2�1 − 	2In�rk�1 − 	2�

RkIn−1�Rk�1 − 	2� − n
�1 − 	2

1 − 	
In�Rk�1 − 	2�

�16�

while for 	2=1 and �n	��0,

p̂ =
2�kU − ��2��1 + �n��ŵ

n2 + �n� + k2R2

r�n�

R�n�−1 �17�

and for 	2�1,

p̂ =
− �ŵR�� − kU�2�	2 − 1Jn�rk�	2 − 1�

RkJn−1�Rk�	2 − 1� − n
�	2 − 1

	 − 1
Jn�Rk�	2 − 1�

�18�

where Jn and In are the Bessel and modified Bessel functions of
the first kind and order n. The pressure exerted by the fluid on the
shell surface in Eq. �2� can be expressed linearly by expanding
Eq. �8� around the mean wall position and neglecting second order
terms of a Taylor expansion

pw = p̂�r=Rei� + 	 �P

�r
	

r=R

ŵei� �19�

Substituting in the steady pressure solution of Eq. �11� into Eq.
�19�, the pressure of the fluid at the wall can be written as a linear
function of the wall displacement

pw = �p̂�r=R + ��2Rŵ�ei� �20�

where p̂ is given by Eqs. �16�–�18� depending on 	 and n.
For our analysis, we define the following dimensionless num-

bers, namely, the reduced velocity, the shell thickness ratio, the
density ratio, the dimensionless rate of rotation, shell-wall pres-
sure, axial wave number, complex frequency, coordinates, and
shell deformations

UR =
U�

R
, h̄ =

h

R
, �̄ =

�s

�
, �̄ = ��, p̄ =

�2

ŵR�s

p̂�r=R

k̄ = Rk, �̄ = ��, x̄ =
x

R
, r̄ =

r

R
, �ū, v̄,w̄ =

1

R
�û, v̂,ŵ

�21�
respectively. The equation for the pressure at the wall �Eq. �20��
along with the traveling-wave solution �Eq. �15�� are substituted
into the shell �Eq. �2��. With the use of the dimensionless numbers
in Eq. �21�, the equations of motion of the coupled shell-fluid
system can be written as a dimensionless linear homogeneous
system of three equations:

�L��̄,UR, �̄, h̄,�, k̄,n,�̄��� ū

v̄

w̄
� = 0 �22�

where

�L��̄,UR, �̄, h̄,�, k̄,n,�̄�� = �
− k̄2 −

1 − �

2
n2 + �̄2 −

1 + �

2
k̄n − i�k̄

−
1 + �

2
k̄n −

1 − �

2
k̄2 − n2 + �̄2 + �̄2 − in − i2�̄�̄

− i�k̄ − in − i2�̄�̄ 1 +
h̄2

12
�k̄2 + n2�2 − �̄2 − �̄2 −

1

h̄�̄
�p̄ + �̄2� � �23�
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We obtain the dispersion relation of the admissible complex fre-

quencies �̄ with the wave numbers k̄ and n by setting the deter-

minant of L equal to zero. For given values of k̄ and n, the cor-
responding complex values of �̄ are found numerically. Each

combination of k̄, n, and �̄ satisfying the governing equations of
the system corresponds to a mode of the system. For each mode,
the complex frequency has a real and an imaginary part, �̄= �̄r
+ i�̄i. The real part is the frequency of oscillation and the imagi-
nary part is the rate of damping. If �̄i
0, the mode of vibration is
unstable and a small perturbation will increase exponentially. On
the other hand, if �̄i�0, the mode of vibration is stable and a
small perturbation will decay. If �̄i=0, the mode is neutrally
stable.

Two numerical methods are used to obtain the dispersion rela-
tion. Without rotation, it is possible to use a Müller iterative pro-
cedure to find the complex frequencies, but in the presence of
rotation the most suitable numerical scheme is the zero-level con-
tour method. For a given domain of �̄r and UR, the determinant of
L is found and a zero-level contour plot is realized, which leads to
the admissible neutrally stable frequencies.

Up to here, the derivation of the model is identical to Lai and
Chow’s. To get an insight of the behavior of the flow near the
singularities we consider the relative velocity between the axial
velocity of the flow and the traveling waves in the shell

Vx
� =

Vx − �/k
U − �/k

�24�

From Eqs. �3�, �9�, and �16�–�18�, we can obtain the relative
axial velocity.

For 	2
1,

Vx
� = 1 −

ŵk�1 − 	2In�rk�1 − 	2�

In−1�Rk�1 − 	2� −
n

kR

�1 − 	2

1 − 	
In�Rk�1 − 	2�

ei�

�25�

while for 	2=1 and �n	��0,

Vx
� = 1 −

2k2�1 + �n��ŵ
n2 + �n� + k2R2

r�n�

R�n�−1ei� �26�

and for 	2�1,

Vx
� = 1 +

ŵk�	2 − 1Jn�rk�	2 − 1�

Jn−1�Rk�	2 − 1� −
n

kR

�	2 − 1

	 − 1
Jn�Rk�	2 − 1�

ei�

�27�
It can be shown that upon defining a modified Rossby number as

Ro� =
U − �/k

2R�
=

1

kR	
�28�

and selecting n=0, Eqs. �25�–�27� are identical to Eqs. �7�, �9�,
and �11� in Chow �7� where the waves in the varicose tube are not
moving. In other words, if one observes the flow from a reference
frame moving with the traveling-wave deformations of the shell,
the axial flow in the shell is identical to that in the rigid varicose
tube.

3 Results
As in Refs. �9,11�, we investigate the stability of a rubber shell

containing water flow with h̄=0.02, �̄=1.05, and �=0.49. We con-
sider first the dynamics of a nonrotating shell carrying a purely
axial flow, and then analyze how the solution breaks down when
rotation is present and how this breakdown is related to the physi-
cal phenomenon of blocking.

First, for a nonrotating shell, �̄=0, the evolution of the fre-
quencies of the system for increasing internal flow velocity is

plotted in Fig. 3 for k̄=7.2. In each combination of axial and
circumferential wave numbers, the system loses stability by
coupled-mode flutter when the forward and the backward
traveling-wave frequencies coalesce. A mode is said to be unstable
when its imaginary frequency becomes negative. For example, in
Fig. 3, the circumferential mode n=6 becomes unstable at UR
=0.109. The curves in Fig. 3 reproduce the results without rota-
tion of Lai and Chow �9� perfectly.

In the presence of rotation, �̄=0.1, Lai and Chow �9� obtained
the frequency evolution curves in Fig. 4. From these results, it is

surmised that, for an axial wavenumber k̄=10, the system first
loses stability in the n=3 mode at UR=0.089, at the “nose” of the
curve shown.

However, it is impossible to reproduce any of the curves in Fig.

4. For the typical case �̄=0.1, k̄=10, and n=0, we obtain the
dispersion relation curve shown in Fig. 5 superimposed on the
contour plot of the absolute value of 	, which is defined in Eq.
�13�. This plot is similar to that obtained by Cortelezzi et al. �11�.
The “islets where a solution is not feasible” described in Ref. �11�
really are numerous infinitely long lines that appear as islets only
because of the coarse numerical resolution. These lines of no so-
lution, parallel to the �	�-isolines in the region where �	��1 in
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Fig. 3 Evolution of the complex frequencies of the system
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Fig. 4 Stability curve of Lai and Chow †9‡ for the system with
Ω̄=0.1 and k̄=10. Figure reproduced from Ref. †9‡.
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Fig. 5 arise at every zero of the denominator of the pressure so-
lution, Eq. �18�. In the axisymmetric case n=0, the singularities

happen when 	2=1+ �� / k̄�2, where � designates the �th zero of
the function J1��.

To further our understanding, we take a look at the relative
axial velocity profile of Eqs. �25�–�27� for increasing rotation rate.
In Fig. 6 we plot the relative axial velocity profile at the throat,

x̄=� / k̄, for the case k̄=3 and w̄=0.1. As the rotation rate is in-
creased from 	=0 to 	=1.5, the velocity at the center of the
cylinder, Vx

�, keeps increasing. In fact, it keeps increasing with 	
up to 	=1.6221, which corresponds to the first singularity

k̄�	2−1=1, at which point the velocity and pressure solutions

blow up. When k̄�	2−1 is in the neighborhood of �, a small
deformation of the wall, w̄, creates a perturbation velocity in the
flow, which is not necessarily small when compared with the
mean flow velocity UR. In this case, the linear approximation used
in this analysis becomes invalid. As expected from the similitude
in the equations, in a reference frame moving with the traveling
waves, the axial flow in the deforming shell plotted in Fig. 6 is
identical to that in a permanently deformed tube by Chow �7�.

Since the flow in the deforming shell and the flow in the per-
manently deformed tube of Chow �7� are identical when viewed in
the appropriate reference frame, we get a physical insight as to
what happens to the flow at a critical 	 by reviewing the results of

Chow �7� for the behavior of the flow in a converging-diverging
nozzle at a critical Rossby number. The streamlines and the flow
velocity profile obtained at the first critical Rossby number by
Chow �7� are shown in Fig. 1. At a critical Rossby number, the
streamlines become parallel to the pipe, and the fluid near the wall
is stagnant. What happens to the flow is well described by Chow
�7�: “Physically speaking, the fluid cannot go around the humps at
the wall, and is expected to become stagnant in that region. This is
the phenomenon of blocking, which occurs in a rotating and in a
stratified fluid flow.” The exact shape of the deformed wall be-
comes irrelevant, as the fluid close to the wall is stagnant and the
effective cross section of the tube is reduced by an amount equal
to the height of the constriction.

It is not clear how blocking of the flow would affect the stabil-
ity of the shell. Since our model is linear and the boundary con-
ditions at the interface between the flow and the deforming wall of
the shell are applied at the undeformed position of the wall, block-
ing cannot be accounted for in the current linear model.

For nonaxisymmetric cases, the behavior is at first sight similar.
For any circumferential wavenumber n, the denominator of the
pressure solution for 	2�1, Eq. �18�, has an infinite number of
roots, which lead to an infinite number of critical values of 	
where no flow solution exists. The effect of increasing the rate of
rotation on the relative axial velocity profile in a nonaxisymmetric

mode for k̄=10 and n=3 is shown in Fig. 7. The behavior is
qualitatively similar to what happens for axisymmetric modes.
The flow velocity blows up at a critical 	. Since no results are
available in the literature on the behavior of flow in a permanently
spinning nonaxisymmetrically deformed tube, it is impossible to
visualize the flow pattern. On the other hand, because the exact
shape of the constriction to the flow becomes irrelevant as the
fluid close to the wall is stagnant, one is led to believe that dy-
namics similar to what is shown in Fig. 1 would occur for non-
axisymmetric deformation. This, however, has to be investigated
further.

As to how Lai and Chow obtained the closed curves in Fig. 4 in
Ref. �9� for the dispersion relation when rotation is present, this
question is still open. One possible explanation is that a very
limited number of terms were used in a series expansion to rep-
resent the Bessel functions, hence reducing the number of roots in
the denominator of the pressure function in Eq. �17�. By using a
finite number of points to trace the curve they could have
“skipped” over the singularities and hence got a continuous but
numerically incorrect dispersion relation curve �see Ref. �13� for
details�.

4 Conclusion
When considering the rotating inviscid axial flow inside a coro-

tating cylindrical shell, if one places oneself in a frame of refer-
ence moving with the traveling waves in the shell wall, the flow is

Fig. 5 Evolution of the real frequency of the mode k̄=10 and
n=0 of the system for Ω̄=0.1 over the contour plot of the ab-
solute value of �
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identical to that in a rigid varicose tube. By visualizing the flow in
a permanently and axisymmetrically deformed tube, as in Chow
�7�, we can understand that in the shell the phenomenon of block-
ing creates a stagnation region between the humps of the wall
when the Rossby number approaches a critical value. The linear
model cannot account for this stagnation region and the solution
blows up. The solution also blows up for nonaxisymmetric defor-
mation modes and the physical explanation may be basically the
same. In order to correctly model the flow inside the rotating
cylindrical shell, accounting for geometric nonlinearities in the
boundary conditions and viscous effects in the flow model would
be necessary.
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Nomenclature
E � shell-material Young’s modulus
h � shell thickness
k � axial wavenumber
n � circumferential wavenumber
R � shell radius

Ro � Rossby number
Ro� � modified Rossby number

r ,� ,x � radial, azimuthal, and axial coordinates
U � mean plug flow velocity

UR � reduced velocity
u ,v ,w � shell deformation components

Vr ,V� ,Vx � flow velocity components
Vx

� � dimensionless axial flow velocity relative to
the traveling waves in the shell

� � shell timescale
	 � dimensionless relative rotation rate
� � shell-material Poisson’s ratio
� � fluid density

�s � shell-material density
� � rate of rotation

� ,�r ,�i � complex, real, and imaginary frequencies

� denotes a dimensionless variable

Appendix: Linear Shell Theory
The Donnell–Mushtari thin cylindrical shell equations are de-

rived in detail in Ref. �12�. The simplest available linear cylindri-
cal shell model is based on the following assumptions: the thick-
ness of the shell is small compared with its radius, which implies
among other things that shear deformation is negligible; strains
and displacements are sufficiently small for quantities of second-
and higher-order magnitude in the strain-displacement relations to
be neglected in comparison with the first-order terms; the radial

normal stress is small compared with the other two normal stress
components and may be neglected; at every location on the shell,
the normal to the undeformed middle surface remains aligned in
the same direction and normal to the deformed middle surface as
the shell deforms �this assumption, which is also referred to as the
Kirchhoff hypothesis, represents an extension to the case of a thin
elastic shell of the familiar Euler–Bernoulli hypothesis of beam
theory which states that plane sections remain plane; the assump-
tion of the preservation of the normal implies, among other things,
that all of the strain components in the direction of the normal to
the reference surface vanish�; in the changes in curvature and in
the twist of the midsurface, the tangential displacements and their
derivatives are neglected �from this simplification, the stretch of
the shell only depends on the strain and the transverse displace-
ment�; Hooke’s law is the constitutive law obeyed by the material;
the shell material is isotropic; the stress tensor is symmetric �ne-
glect body couples�.

The linear Donnell–Mushtari shell operator used in Eq. �2� can
be written as

LD = �
�2

�x2 +
1 − �

2R

�2

��2

1 + �

2R

�2

�x � �

�

R

�

�x

1 + �

2R

�2

�x � �

1 − �

2

�2

�x2 +
1

R2

�2

��2

1

R2

�

��

�

R

�

�x

1

R2

�

��

1

R2 +
h2

12
�2�2 �

�29�

where �2=�2 /�x2+ �1 /R2��2 /��2.
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Dynamic Variational-Asymptotic
Procedure for Laminated
Composite Shells—Part I:
Low-Frequency Vibration
Analysis
An asymptotically correct dynamic shell theory, valid over a wide range of frequencies
and wavelengths, is rigorously derived from an analytical point of view. The derivation
provides insight and guidance for the numerical modeling of layered shells. This work is
based on three essential theoretical foundations: (a) the concept of decomposition of the
rotation tensor, which is to establish the dynamic three-dimensional elasticity problem in
a compact and elegant intrinsic form for application to the complex geometry of shells;
(b) the variational-asymptotic method, which is to perform a systematic and mathemati-
cal dimensional reduction in the long-wavelength regime for both low- and high-
frequency vibration analysis; and (c) hyperbolic short-wavelength extrapolation, which is
to achieve simple, accurate, and positive definite energy functionals for all wavelengths.
Based on these, unlike most established shell theories that are limited to the long-
wavelength low-frequency regime, the present theory describes in an asymptotically cor-
rect manner not only the low-frequency but also some of the first high-frequency branches
of vibrations in the long-wave range. Moreover, it recovers the approximate three-
dimensional stress state in both long- and short-wavelength ranges.
�DOI: 10.1115/1.3002761�

1 Introduction
Because laminated composite shells are increasingly being used

in various engineering applications that are very sensitive to ex-
cessive structural noise and vibration, research covering the dy-
namic behavior of composite shells has received considerable at-
tention in the past three decades. By the imposition of limits on
wavelengths and timescales in question, one can broadly classify
the analysis of shell structural dynamic response into three re-
gimes corresponding to various forms of dynamic disturbances: �i�
long-wavelength low-frequency vibration analysis �for a low-
frequency disturbance�, �ii� long-wavelength high-frequency
analysis �for a medium-frequency disturbance�, and �iii� short-
wavelength high-frequency analysis �for a high-frequency distur-
bance� �1,2�. In general, the short-wavelength low-frequency vi-
bration analysis is not of great interest in dynamics because it is
used to determine quasistatic boundary layers localized near the
edges of the shell, whereas the other analyses describe distur-
bances that may extend over the entire shell. Referring to the
existing literature, one can easily observe that there has been a
tremendous amount of work done on using approximate shell
models for the prediction and control of structural dynamic re-
sponses under the first regime, i.e., long-wavelength low-
frequency vibration conditions �3–8�. However, for the second
and third regimes there has been very little work done; see, for
example, Refs. �9–12�.

Tracking the history of new developments of approximate shell
and plate theories, one can observe that there are two main com-
peting methodologies: asymptotic �13� and variational �14�. With
the help of these two methods, there have been many attempts to

develop dynamic models valid over a wide range of frequencies.
First, in order to use variational methods, one needs an a priori
kinematical assumption for the distribution of displacements as
functions of the through-thickness coordinate. Substituting this
assumption into the three-dimensional �3D� energy functional, one
can derive the equations determining the dependence of the dis-
placement field on the thickness coordinate by varying the func-
tional obtained after the averaging procedure. The main disadvan-
tage of the variational method is the necessity of a kinematical
assumption, while simplicity and brevity are its advantages.

On the other hand in asymptotic methods one expands the dis-
placements in an asymptotic series, so that no ad hoc kinematical
assumptions are needed. Indeed, the asymptotic method needs no
a priori assumptions; however, it is very cumbersome and re-
stricted from both geometric and material points of view
�2,15,16�. Although there are many new theories based on elabo-
rate mathematics or bound up with the phenomenal power of com-
puters in the literature, none of them resolves satisfactorily all the
above disadvantages at the same time. This is partly because there
are many new models that are constructed for specific problems
without generalization in mind �variational method case� and
partly because some models are too complicated to be used in
design �asymptotic method case�. Simple yet efficient and gener-
alized methods of analysis are still needed to predict the structural
dynamic response over a wide range of frequencies.

Berdichevsky �14,17,18� first proposed the synthesis of these
two methods, called the variational-asymptotic method �VAM�,
which avoids the disadvantages of both methods described above.
It also has proved to be very effective and accurate in formulating
theories for a variety of elastic structures, such as theories for the
static analysis of both isotropic and composite beams �19� �see
also Ref. �20� and the many works cited therein�, plates �21�, and
shells �22�, as well as low- and high-frequency theories for vibra-
tions of isotropic beams, plates, and shells �23�. At least some
asymptotic methods give results similar to VAM, but they are

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received September 5, 2007; final manu-
script received May 22, 2008; published online October 23, 2008. Review conducted
by Edmundo Corona.

Journal of Applied Mechanics JANUARY 2009, Vol. 76 / 011002-1Copyright © 2009 by ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



more difficult to apply, more awkward in the series substitution
into the equations of the 3D theory, and more problematic as far as
the subsequent asymptotic derivation of the recurrent system of
equations for corresponding terms of the series. Especially for
dimensional reduction, the VAM is a quite powerful and system-
atic mathematical method.

The present development represents a new contribution, as
there is no published work on using the VAM for the modeling of
composite shells, layers of which possess monoclinic symmetry,
that is valid over a wide range of frequencies and expressed in an
analytic form. In this first paper of a two-part series, we present
the procedure for low-frequency vibration analysis according to
the VAM, applicable to shells in which each layer is made of
monoclinic composite material. In this procedure, we can define a
position vector in the deformed configuration as a result of the
primary step under the long-wavelength low-frequency approxi-
mations. This is the very beginning point assumption on which
most published shell theories are based, whether analytical or nu-
merical. Based on this, one can obtain the total energy functional
asymptotically correct up to the zero-order approximation, such as
classical laminated shell theories, just as in the static case. In the
second paper, high-frequency vibration analysis and hyperbolic
short-wavelength extrapolation are undertaken for the same type
of shell.

2 Shell Kinematics
A shell may be considered geometrically as a smooth 2D sur-

face S surrounded by a layer of matter with thickness h to form a
3D body with one dimension much smaller than the other two. Let
S be called the reference surface of the 3D body, bounded by a
smooth closed curve �S and mathematically represented by a set
of arbitrary curvilinear coordinates, x�. However, without loss of
generality, one may simplify the formulation by choosing the lines
of curvature as curvilinear coordinates. In addition, for represent-
ing the 3D medium uniquely and following a very natural choice
generally, the third coordinate is specified as x3=h�, the coordi-
nate normal to the reference surface. Throughout the analysis, a
nondimensional coordinate through the thickness is used −1 /2
���1 /2. In fact, almost all published shell theories are based on
this choice. Note that here and throughout the rest of the shell
development, Greek indices assume values 1 and 2 while Latin
indices assume 1, 2, and 3. Repeated indices are summed over
their range except where explicitly mentioned. As sketched in Fig.
1, letting b3�x1 ,x2� denote the unit vector normal to the reference
surface of the undeformed shell, one can then describe the posi-
tion of any material point in the stress-free undeformed configu-
ration by its position vector r̂ relative to a point O fixed in an
inertial frame, such that

r̂�x1,x2,�� = r�x1,x2� + h�b3�x1,x2� �1�

where r is the position vector from O to the point located by x� on
the reference surface.

When the reference surface of the undeformed shell coincides
with its middle surface, it naturally follows that

�r̂�x1,x2,��� = r�x1,x2� �2�

where the angle-brackets �•� denote the definite integral through
the thickness of the shell �� �−1 /2,1 /2� and will be used
throughout the rest of the development for shells.

Typically, let 2D base vectors a� associated with x� be defined
as

a��x1,x2� = r,� �3�

From henceforth, for simplicity, we will avoid including the inde-
pendent variables on which a function depends unless it is not
obvious for the reader to determine what they are. From Eq. �3�
one can define the so-called Lamé parameters as

A��x1,x2� = �a� · a� �4�

Let us mention that in Eq. �4�, the summation convention is not
applied because � is not a dummy index; this same rule will apply
to the rest of the development as well. Then, for the computational
procedures used later, the 2D unit base vectors bi constitute an
orthogonal triad system such that

b��x1,x2� =
a�

A�

, b3 = b1 � b2 =
a1 � a2

�a1 � a2�
�5�

Now by taking the partial derivatives of Eq. �1� with respect to x�,
it is easy to see that the covariant 3D base vectors gi associated
with the chosen coordinate system are given by

g1 = a1 + h�b3,1

g2 = a2 + h�b3,2

g3 = b3 �6�

From the differential geometry of the surface and with the help of
Refs. �24,25� one can express the derivative of 2D unit base vec-
tors bi,� as follows:

bi,� = A�k� � bi �7�

with

k� = �− k�2b1 + k�1b2 + k�3b3� �8�

where k� is the curvature vector measured in bi in which k��
refers to out-of-plane curvatures. As mentioned before, because
we chose the lines of curvature to be the coordinates, one can
easily observe that k12=k21=0. Moreover, since we are interested
in the interior solution up to the first approximation for regular
shells, we can assume that the initial curvatures kij and Lamé
parameters A� slowly vary or are constant to make our problem
more tractable and the procedure simpler. This assumption will
result in the neglect of all the derivatives of these quantities with
respect to in-plane coordinates x� in the formulation.

By the standard definition �24�, the contravariant base vectors
are given by

Fig. 1 Schematic of shell deformation
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gi�xl� =
1

2�g
eijkg j � gk �9�

where g=det�gi ·g j� is the determinant of the metric tensor for the
undeformed configuration, and eijk are the components of the per-
mutation tensor in a Cartesian coordinate system.

When the shell is deformed, the particle that had position vector
r̂�x1 ,x2 ,�� in the undeformed state now has the position vector

R̂�x1 ,x2 ,� , t� in the deformed configuration. The latter can be
uniquely determined by the deformation of the 3D body. A new
triad Bi�x1 ,x2 , t� is introduced for the deformed shell. Note that
the Bi unit vectors are just tools to enable one to express vectors
and tensors in their component form during the derivation. They
are not necessarily tangent to the coordinates of the deformed
shell. The relation between Bi and bi can be specified by an arbi-
trarily large rotation in terms of the matrix of direction cosines
C�x1 ,x2 , t�, so that

Bi = Cijb j, Cij = Bi · b j �10�

subject to the requirement that Bi is coincident with bi when the
structure is undeformed. Without loss of generality, the position

vector R̂ can be defined as

R̂�x1,x2,�,t� = Pi�x1,x2,�,t�Bi�x1,x2,t� �11�

where Pi are unknown arbitrary 3D functions to be determined
independently at each frequency regime.

Before closing this section, definitions of the 2D generalized
curvature and inertial angular velocity measures are introduced for
the purpose of formulating this problem in dynamic intrinsic form.
Following Ref. �26�, they can be defined as

Bi,� = A��− K�2B1 + K�1B2 + K�3B3� � Bi, Ḃi = � jB j � Bi

�12�

where Kij are the curvatures of the deformed surface, which are
the sum of curvatures of undeformed geometry kij and curvatures
introduced by the deformation �ij. The order of the latter is de-
noted by O��̂ /h�, where �̂ is the order of the maximum strain in
the shell. In addition, �i are the inertial angular velocity measures
of the deformed shell reference surface, the order of which is
denoted by O�c�̂ / l� with c being the order of the characteristic
velocity of plane waves c0 in the composite material under con-
sideration.

3 3D Formulation
Following Ref. �27�, the Jauman–Biot–Cauchy strain compo-

nents for small local rotation are given by

	ij =
1

2
�Fij + Fji� − 
ij �13�

where 
ij is the Kronecker symbol, and Fij the mixed-basis com-
ponent of the deformation gradient tensor such that

Fij = Bi · Gkg
k · b j �14�

Here Gi=�R̂ /�xi is the 3D covariant basis vector of the deformed
configuration. With the help of Eqs. �9� and �12�–�14�, one can
obtain the 3D strain and velocity fields as

	11 =
P1;1 − �13P2 + �k11 + �11�P3

1 + h�k11
− 1

2	12 =
P1;2 − �23P2 + �21P3

1 + h�k22
+

P2;1 + �13P1 + �12P3

1 + h�k11

	22 =
P2;2 + �23P1 + �k22 + �22�P3

1 + h�k22
− 1

2	13 =
1

h
P1�� +

P3;1 − �k11 + �11�P1 − �12P2

1 + h�k11

2	23 =
1

h
P2�� +

P3;2 − �21P1 − �k22 + �22�P2

1 + h�k22

	33 =
1

h
P3�� − 1 �15�

and

�1 = Ṗ1 − �3P2 + �2P3

�2 = Ṗ2 + �3P1 − �1P3

�3 = Ṗ3 − �2P1 + �1P2 �16�

where �•�;�= �1 /A��� �•� /�x�, �•���=��•� /��, and �•̇�=��•� /�t. Note
that unlike most published 2D shell theories, the order of un-
known 3D functions Pi is not assumed a priori to derive Eqs. �15�
and �16�, but rather it is obtained as a result of the minimization
procedure in the primary approximation for each range of fre-
quency vibrations. For convenience q̂ denotes the order of Pi.

Until now, by using the concept of decomposition of the rota-
tion tensor, we have been trying to keep the analysis both general
and simple. However, to make the problem more manageable, we
have to make some inevitable approximations that published shell
theories have almost universally used. There are several small
parameters in most engineering structures, and the existence of
small parameters brings about a great variety of possibilities for
application of asymptotic methods. In the shell problem consid-
ered, three possible small parameters exist: the maximum strain �̂,
the geometric parameter h /R, and the thickness-to-wavelength pa-
rameter h / l, where R is the characteristic radius of curvature of
the shell reference surface and l is the characteristic wavelength in
the in-plane directions. To stipulate the third parameter, as small
implies the long-wavelength regime, where the smallest wave-
length l of the deformation pattern associated with the in-plane
coordinates is considerably greater than the shell thickness h.
Moreover, we will introduce one more important physical param-
eter for a dynamical shell theory

h

c0�
�17�

where c0 is the characteristic velocity of shear waves in the com-
posite material under consideration, and � is the characteristic
timescale of the change of the deformation with respect to time,
which also corresponds to the period of vibrations. Following Ref.
�14�, if one limits the consideration to the low-frequency vibration
of the shell, then � can be linked to l as

h

c0�
 1 ⇒ � 	 O
 l

c0
� �18�

On the other hand, for the high-frequency �thickness� vibrations
case

h

c0�
� 1 ⇒ � 	 O
 h

c0
� �19�

Therefore, generally speaking, there are three independent small
parameters: h / l, h /R, and �̂. Note that the wavelength of the high-
frequency vibrations along the thickness coordinate of the 3D
shell is usually smaller than h, but this fact is not an obstacle for
the long-wavelength application of the VAM, which is based on
the smallness of h / l with l being the wavelength in the in-plane
directions.

Following Refs. �25,26�, Hamilton’s principle for the surface
can now be constructed as
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�
t1

t2�
S

�
L + 
W�dSdt = 
A �20�

where t� are arbitrary fixed times, S is the undeformed reference
surface, L is the Lagrangian density per unit area, 
W is the
virtual work of the applied loads per unit area, and 
A is the
virtual action at the boundary of shell and at the ends of the time
interval. Furthermore, L can be written as

L = K − U �21�

By definition, K and U are the 3D kinetic energy and strain energy
densities per unit area, respectively, of the form

K =
1

2
����e

T�e + �3
2��� �22�

and

U =
1

2� 	e

2	s

	3
�

T

D� 	e

2	s

	3
���

=
1

2� 	e

2	s

	3
�

T

� De Des De3

Des
T Ds Ds3

De3
T Ds3

T D3
�� 	e

2	s

	3
��� �23�

where

	e = �	11 2	12 	22 �T

2	s = �2	13 2	23 �T

	3 = 	33

�e = ��1 �2 �T

�3 = �3 �24�

with

� =
g1 � g2 · g3

�a1 � a2�
= 1 + 2h�H + �h��2K �25�

Here H= �k11+k22� /2 and K=k11k22 are called the mean and the
Gaussian curvatures of the surface, respectively, ���� is the mass
density of a 3D body and D��� is the 3D 6�6 material matrix. As
one can see, the matrix De, the column matrix Ds, and the scalar
D3 refer to extensional, shear, and thickness elasticities. In par-
ticular, because we have an interest in modeling composite shells,
each lamina of which is made of a material with monoclinic sym-
metry, Des and Ds3 always vanish no matter what the layup angle
is in Eq. �23�. Considering this, we can simplify the strain energy
expression, Eq. �23�, to the following form:

U =
1

2
��	e

TDe	e + 2	e
TDet	t + 2	s

TDs�2	s� + D3	3
2��� �26�

If there are surface tractions and body forces applied to the
shell, the virtual work can be obtained as


W = 
��iPi
+ + �iPi

− + ��iPi�� �27�

where �i, �i, and �i are the applied loads on the top surface and at
the bottom surface and body force through the thickness, respec-
tively, �•�+= �•� ��=1/2, and �•�−= �•� ��=−1/2. Here the loading can be
assumed to be of order h / l and h /R, which is acceptable for our
level of approximation.

Now, the complete statement of the problem can be presented
in terms of the principle of virtual work, such that


K − 
U + 
W = 0 �28�

In spite of the possibility of accounting for nonconservative forces
at the starting point of the analysis, the problem that governs the
3D unknown functions turns out to be linear. Hence, any noncon-
servatism in the applied loads only affects the 2D analysis, and
one can pose the problem that governs the functions as the mini-
mization of a total energy functional, viz.,

L = K − P �29�

with P=U+V, so that


L = 0 �30�

where the work done by applied loads V is

V = − ��
TP�

+ − �3P3
+ − ��

TP�
− − �3P3

− − ���
TP�� − ��3P3� �31�

where �•�� = ��•�1 �•�2 �T.
Below, for simplicity of terminology, we will refer to P as the

total potential energy, or the total potential. Here and throughout
the rest of the shell development, we assume the mass density to
be a constant to make our problem more tractable and the proce-
dure simpler. Introducing nondimensional quantities � /�0=1 and
D�=D /�0 into Eqs. �22� and �26�, the total energy functional can
be nondimensionalized, so that

2K = �0���e
T�e + �3

2��� �32�

and

2U = �0��	e
TDe

�	e + 2	e
TDe3

� 	3 + 2	s
TDs

��2	s� + D3
�	3

2��� �33�

Here �0 and �0 are characteristic values of mass density and ma-
terial constants in the material under consideration �all of which
are assumed to be of the same order�. Therefore, c0=��0 /�0. Up
to this point, this is simply an alternative formulation of the origi-
nal 3D elasticity problem. If we attempt to solve this problem
directly, we will meet the same difficulty as solving any full 3D
elasticity problem. Fortunately, as shown below, VAM can be used
to calculate the 3D unknown functions asymptotically.

4 Primary Approximation
The dimensional reduction from three dimensions to two cannot

be done exactly. The best one can do is to accomplish it asymp-
totically taking advantage of the small parameters. With h / l, h /R,
�̂, and the additional small parameter in Eq. �18�, we are ready to
determine the constraints and the orders of the undetermined func-
tion for long-wavelength low-frequency vibrations. At the primary
step of VAM, since the 3D undetermined functions Pi�x1 ,x2 ,� , t�
have small characteristic lengths along the thickness coordinate �,
the entire kinetic energy density stemming from Eq. �18� and all
derivative terms with respect to in-plane coordinates �O�q̂ / l�2� in
the strain energy density can be neglected when compared with
derivative terms with respect to the thickness coordinate
�O�q̂ /h�2�. The latter can be retained as the formally leading terms
in Eq. �33�; note that one may denote the order of Pi by O�q̂�.
Therefore, from Eq. �29� we obtain the following functional:

2L = − �0� 1

h2 P���
T Ds

�P��� +
1

h2D3
�P3��

2 � �34�

It is obvious that the above Eq. �34� is negative definite; its maxi-
mum is equal to zero and is reached for functions R that are
independent of �, i.e.,

R̂�x1,x2,�,t� = R�x1,x2,t� �35�

where R� and R3 �components of R in the Bi basis� are arbitrary
functions of x� and t. Now, in accordance with the variational-
asymptotic scheme, the position vector Eq. �11� in the deformed
configuration can be redefined in the form
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R̂�x1,x2,�,t� = R�x1,x2,t� + P̄i�x1,x2,�,t�Bi�x1,x2,t� �36�

where P̄i are unknown 3D functions to be determined later. The
formulation in Eq. �36� is six times redundant because of the way
unknown functions are introduced; six constraints are needed to
make it unique. The redundancy can be removed by choosing
appropriate definitions of R and Bi. The first three constraints can
be chosen such that the average of each function through the
thickness vanishes. Following Refs. �14,23�, if we define R simi-
larly as Eq. �2� to be the average position through the thickness of
the deformed configuration, from it follows that the undetermined
functions satisfy the three constraints

�P̄��x1,x2,�,t�� = 0, �P̄3�x1,x2,�,t�� = 0 �37�

According to Eq. �37�, R describes the position vector from point
O to the point on the reference surface of the deformed shell, i.e.,

R�x1,x2,t� = r�x1,x2� + u�x1,x2,t� �38�

where u�x1 ,x2 , t� denote the average shell displacement vector.
Another two constraints can be specified by taking B3 as the

normal to the reference surface of the deformed shell. It is pointed
out that this choice is only for convenience in the derivation and
has nothing to do with the Kirchhoff assumption.

Definitions of the 2D generalized strain and inertial velocity
measures are needed for calculating the undetermined functions
asymptotically. Following Refs. �25,26,28�, they can be defined as

R,� = A��B� + ���B��, Ṙ = ViBi �39�

where ��� are the 2D in-plane strains, the order of which is de-
noted by O��̂�, and Vi are the inertial velocity measures of any
material point on the shell reference surface, the order of which is
denoted by O�c�̂�. Both ��� and ��� are termed as 2D generalized
strains. On the other hand, both Vi and �� are termed as 2D
inertial generalized velocities. Here one is free to set �12=�21, i.e.,

B1 · R,2

A2
=

B2 · R,1

A1
�40�

which can serve as another constraint to specify the global rota-
tion of the triad Bi and make the formulation in Eq. �36� unique. It
is important to emphasize that both generalized strain and velocity
measures are nonlinear expressions in terms of 2D displacement
and rotation measures and are the source of the geometrical non-
linearities in the 2D shell analysis.

In accordance with the variational-asymptotic scheme, we sub-
stitute Eq. �36� again into the total energy functional and neglect

all small terms containing P̄� and P̄3 in the asymptotic sense. Due
to the low-frequency assumption Eq. �18�, the time derivatives of

P̄� and P̄3 can be removed from the kinetic energy density again.
As the result of the foregoing procedure the total potential can be
retained as the formally dominant terms in the form

2L = − �0� 1

h2 P̄���
T Ds

�P̄��� + 2�TDe3
� 
1

h
P̄3�� − 1� + D3

�
1

h
P̄3�� − 1�2�

�41�

where

� = ��11 2�12 �22 �T
The unknown function that maximizes the energy functional ex-
pression of Eq. �41�, subject to constraint Eq. �37�, can be ob-
tained by applying the usual procedure of the calculus of varia-
tions with the aid of Lagrange multipliers. The final result is

P̄� = 0, P̄3 = h� �42�

Finally, as a result of the primary step under the low-frequency

long-wavelength approximations, the position vector R̂ can be
expressed as

R̂�x1,x2,�,t� = R�x1,x2,t� + h�B3�x1,x2,t� + wi�x1,x2,�,t�Bi�x1,x2,t�
�43�

where the unknown 3D functions wi represent the general warping
displacement of an arbitrary point on the normal line of the de-
formed shell, subject to the following three constraints:

�w̄i�x1,x2,�,t�� = 0 �44�

According to Eq. �44�, the 3D displacement distributions now can
be expressed as a series with respect to h� in the case of long-
wavelength low-frequency vibration approximations, just as in
statics. However, Eq. �43� is the very beginning point assumptions
on which most published shell theories are exclusively developed.

Before proceeding to the first approximation, it is convenient to
redefine corresponding 3D strain and velocity fields associated
with Eq. �43�

	e = � + ��h�� + I�w�;� + CR
e w3 + h�C̄R

e �� + ��h���

2	s =
1

h
w��� + e�w3;� + CR

s w�

	3 =
1

h
w3�� �45�

and

�e = V� + ��h��� + ẇ�

�3 = V3 + ẇ3 �46�

with

� = ��11 2�12 �22 �T

h� = �h�11 h��12 + �21� h�22 �T �47�

Here all terms of the type containing �21−�12 are neglected due to
the compatibility equations for the 2D strains �29�. All the opera-
tors are defined as

� = �0 − �

� 0
� �48�

I1 = �1 0 0

0 1 0
�T

I2 = �0 1 0

0 0 1
�T

�49�

e1 = �1 0 �T e2 = �0 1 �T �50�

and

CR
e = �k11 0 k22 �T �51�

C̄R
e = �

− k11 0 0

0 − 
 k11 + k22

2
� 0

0 0 − k22

�
T

CR
s = �− k11 0

0 − k22
�T

�52�

With the help of the methodology in Ref. �21�, one can now con-
struct the virtual work done by applied loads, so that


W = 
qTf + 
�Tm + 
��Tw+ + �Tw− + ��Tw�� �53�

where 
q and 
� are column matrices of the virtual displacement
and rotation measures for the reference surface expressed in the Bi
basis, respectively, and

f = � + � + ���
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m = ẽ3�1

2
�� − �� + ����� �54�

with

ẽ3 = �0 − 1 0

1 0 0

0 0 0
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Thus, the work done by applied loads is
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in which only the warping displacement is varied, subject to the
constraints Eq. �44�.

Using Eqs. �45�, �46�, and �56�, Eq. �29� can be rewritten as a
long-wavelength low-frequency vibration of the nondimensional
energy functional in terms of
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Now one is ready to use the VAM to solve for the unknown
warping field asymptotically.

5 First Approximation (First-Order Warping Field)
The VAM requires one to find the leading terms of the func-

tional according to the different orders. Since only the warping is
varied, one needs the leading terms that involve warping only and
the leading terms that involve the warping and other quantities
�i.e., the generalized strain and velocity and loading�. Based on
this, the leading terms in Eq. �29� for the first approximation are
given by

2L = − �0� 1

h2 �w���
T Ds

�w��� + D3
�w3��

2 � +
2

h
�� + ��h���TDe3

� w3���
�59�

The warping field that maximizes the energy functional expres-
sion of Eq. �59�, subject to constraint Eq. �44�, can be obtained by
applying the usual procedure of the calculus of variations with the
aid of Lagrange multipliers. The resulting warping is

w� = 0, w3 = hD̄1� + hD̄2�h�� �60�

where

D̄1�� = − De3
�T/D3

�, D̄2�� = − �De3
�T/D3

� �61�

with

�D̄1� = 0, �D̄2� = 0 �62�

Here, the solution is the same as that derived by the VAM �22,30�.

6 Total Energy Functional for Low-Frequency Vibra-
tion Analysis

For performing short-wave extrapolation later, it is convenient
to find the total energy functional of low-frequency vibrations in
the long-wavelength regime. Substituting Eq. �60� back into the
total energy functional Eq. �29�, one can obtain the total energy
functional asymptotically correct up to the zeroth-order approxi-
mation as

L =
1

2
�0��V�

TV� + V3
2�� −

1

2
�0��� + ��h���TDc

��� + ��h����

�63�
where

Dc
� = De

� − De3
� De3

�T/D3
� �64�

The energy functional of this approximation coincides with clas-
sical laminated shell theories, just as in statics.

7 Conclusions
Unlike most published work on shell modeling, the present

work proposes a new analytic procedure to rigorously construct an
accurate geometrically nonlinear model for composite shells that
is valid over a wide range of frequencies. The main purpose of
this development is to provide insight and guidance for the devel-
opment of numerical-based shell modeling suitable for a practical
procedure to model layered shells. To do this, the concept of de-
composition of the rotation tensor introduced by Danielson and
Hodges �27� is first used to establish the original three-
dimensional elasticity problem in intrinsic form, which helps to
avoid unnecessary complexities of the mathematical description.
Then, as the most essential and important procedure, the
variational-asymptotic method introduced by Berdichevsky �14�
and Le �23� is used to perform a rigorous dimensional reduction.
This takes advantage of small geometric parameters inherent in
the structure. Unlike the static case, however, there is one more
important physical parameter in the dynamics case. It is called the
characteristic timescale for the change of the deformation with
respect to time; it is also used to analyze shell dynamic response
for long wavelengths, in both low- and high-frequency vibration
regimes. Finally, another logically independent procedure is used,
the extrapolation of the foregoing procedures to the short-
wavelength regime; this procedure was introduced by Berdichev-
sky �14� and Le �23�.

This paper, which is the first part of a two-part series, presents
the low-frequency vibration analysis up to the first approximation.
In this procedure, we define a position vector in the deformed
configuration as a result of the primary step under the long-
wavelength low-frequency approximation. This is the starting
point for most published shell theories, whether analytical or nu-
merical. Based on this, we show that the energy functional of this
approximation coincides with that of classical laminated shell
theories, just as in statics. The present theory is different from the
Berdichevsky–Le theory in two aspects. First, the
Berdichevsky–Le theory is geometrically linear, while the present
theory is based on the intrinsic formulation, which is also valid in
the geometrically nonlinear case. Second, the Berdichevsky–Le
theory restricted to homogenous and isotropic materials, while the
present theory is developed for a layered shell in which each layer
is monoclinic. In particular, the velocity and strain measures in
Eq. �63� are nonlinear functions of surface displacement and ro-
tation variables �29�.

Unlike the low-frequency vibration case, the characteristic
timescale is linked to the smallest wavelength of the deformation
�shell thickness� as part of the asymptotic procedure. Then, be-
cause the frequencies are no longer small, the kinetic energy den-
sity must be retained in the primary step of the high-frequency
vibration analysis. Therefore, it should also be pointed out that for
most published shell theories it is difficult to use the result of the
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primary step under the low-frequency vibration analysis even in a
primary approximation. In the second part of this work, this issue
and another independent procedure, hyperbolic short-wave ex-
trapolation, are further discussed in detail.
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Dynamic Variational-Asymptotic
Procedure for Laminated
Composite Shells—Part II:
High-Frequency Vibration
Analysis
Shell theories intended for low-frequency vibration analysis are frequently constructed
from a generalization of the classical shell theory in which the normal displacement (to
a first approximation) is constant through the thickness. Such theories are not suitable for
the analysis of complicated high-frequency effects in which displacements may change
rapidly along the thickness coordinate. Clearly, to derive by asymptotic methods, a shell
theory suitable for high-frequency behavior requires a different set of assumptions re-
garding the small parameters associated with the characteristic wavelength and time-
scale. In Part I such assumptions were used to perform a rigorous dimensional reduction
in the long-wavelength low-frequency vibration regime so as to construct an asymptoti-
cally correct energy functional to a first approximation. In Part II the derivation is
extended to the long-wavelength high-frequency regime. However, for short-wavelength
behavior, it becomes very difficult to represent the three-dimensional stress state exactly
by any two-dimensional theory; and, at best, only a qualitative agreement can be ex-
pected. To rectify this difficult situation, a hyperbolic short-wave extrapolation is used.
Unlike published shell theories for this regime, which are limited to homogeneous and
isotropic shells, all the formulas derived herein are applicable to shells in which each
layer is made of a monoclinic material. �DOI: 10.1115/1.3002762�

1 Introduction
In the theory of shells, dimensional reduction from the dynamic

equations of three-dimensional �3D� elasticity to the approximate
two-dimensional �2D� equations is possible only if the displace-
ments change little along the in-plane coordinates over distances
of the order of the shell thickness h within the long-wavelength
regime. Formally this can be stated as h / l→0, where l is a char-
acteristic length scale associated with the variation of the defor-
mation of the reference surface, often referred to as the “wave-
length” of deformation for the reference surface. However, there
is an important physical characteristic � present in dynamics
analysis that is not present in statics. It is called the characteristic
“timescale” associated with the change of the deformation with
respect to time. Following Ref. �1�, one can establish the
asymptotic relationships between the characteristic wavelength
and timescale, both in the long-wavelength regime. If one limits
the consideration to low-frequency vibration of the shell, then �
can be linked to l as

h

c0�
� 1 ⇒ � � O� l

c0
� �1�

where c0 is in general the characteristic velocity of shear waves in
the composite material under consideration. Like the correspond-
ing static shell analysis, Eq. �1� leads, in the first approximation,
to classical laminated shell theories for which the displacements
are constant through the thickness. See Part I of this paper for a

detailed presentation procedure of the low-frequency vibration
analysis.

However, the above condition that published shell theories are
almost universally used is not suitable for analyzing complicated
high-frequency effects. This is because the displacements rapidly
oscillate along the thickness coordinate and an infinite variety of
displacement distributions along the shell thickness �branches� are
possible. Based on this physical behavior, � can be linked to h
instead of l, so that

h

c0�
� 1 ⇒ � � O� h

c0
� �2�

Moreover, for problems with zero displacement at the edge, it
turns out that the branches have the quality that they are orthogo-
nal with respect to kinetic and strain energies up to the first ap-
proximations. This makes it possible to independently investigate
vibrations corresponding to different branches �2,3�.

On the other hand, within the short-wavelength range, where
l�h, it is very difficult to represent the 3D stress state exactly by
a 2D theory. Therefore, at best, only a qualitative agreement can
be expected; it is thus more natural to apply the other operator into
the equations of the theory of shells-henceforth referred to as the
hyperbolic short-wave extrapolation procedure. The hypothesis
assumed here is that it needs to be done by using changes of
variable that are motivated by the necessity to match the disper-
sion curves associated with the 2D theory with those of the 3D
theory �4�.

Here in this paper, Part II, we present the whole procedure
covering the high-frequency vibration analysis and hyperbolic
short-wavelength extrapolation procedure in detail. Figure 1
shows a flowchart for the overall process. The work is an exten-
sion of certain works of Berdichevksy and Le �2–5�, which were
restricted to the linear theory and homogeneous isotropic materi-
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als and were presented in a complicated analytical form. On the
other hand, the present theory is based on the intrinsic formulation
and is suitable for layered composite shells of which each lamina
exhibits monoclinic symmetry material. The present work is pro-
vided for insight, guidance, and as a baseline case in the develop-
ment of numerical models for layered shells.

Note that since here and throughout the rest of this paper the
notations employed are the same as in Part I, some sentences or
equations may be skipped for the purpose of avoiding duplication,
but the most important ones are repeated for clarity and smooth-
ness of presentation.

2 Primary Approximation
In the development of a shell theory for long-wavelength low-

frequency vibrations, the 2D total energy functional relies only on
the three functions u, which describe the average displacement
field of the shell. Their characteristics totally depend on the kine-
matics of the deformed shell reference surface, just as in statics.
However, as the frequency increases, it is obvious to assume that
some new degrees of freedom associated with branches of the
shell high-frequency vibrations will come into play and have more
and more influence over a total energy functional. Thus, it be-
comes imperative that we develop a general and systematic way to
obtain those fields corresponding to the new degrees of freedom
and then how to include those as variables in the 2D kinetic and
potential energy densities without relying on mysticism. To do so
the variational-asymptotic procedure will be used to analyze the
vibrations of composite shells under the high-frequency long-
wavelength approximation.

Before proceeding to the primary step of high-frequency vibra-
tion analysis, it is convenient to define a total energy functional,
such that

L = K − P �3�

where K and P are the 3D kinetic energy and potential energy
densities per unit area, respectively.

Now, we need to determine the appropriate constraints and the
exact orders of the yet-to-be-determined displacement field of a
shell undergoing high-frequency long-wavelength vibrations. In
contrast to the case of low-frequency vibration analysis, the ki-
netic energy density must now be retained in the primary step of
the variational-asymptotic procedure since the frequencies are no
longer small because of Eq. �2�. Therefore, from Eq. �3�, we ob-
tain the functional

2L = �0��Ṗ	
TṖ	 + Ṗ3

2�
 − �0� 1

h2 P	��
T Ds

�P	�� +
1

h2D3
�P3��

2  �4�

where �•�	 = ��•�1�•�2�T, �•���=��•� /��, �•̇�=��•� /�t, and �0 and �0
are the characteristic values of mass density and material con-
stants in the material under consideration �all of which are as-
sumed to be of the same order�. Therefore, c0=��0 /�0. Here if
functions P3 and P� are assumed to be independent of in-plane
coordinates x�, one can easily determine that each of the solutions
given above represents an exact solution of 3D dynamic equations
of elasticity for an infinite plate and correspond to synchronized
vibrations of transverse fibers along the plate �with the zero in-
plane wave number�.

Calculating the variation of Eq. �4�, setting the variations of P�

and P3 at t1 and t2 equal to zero, and then assuming P� and P3 are
dependent arbitrarily on the in-plane coordinates x� and harmoni-
cally on t with frequencies �3 and ��, the stationary points of the
energy functional fall into two classes, which can be regarded as
the result of the primary approximation: �i� The out-of-plane dis-
placement P3 is much greater than the in-plane displacements P�

and �ii� the in-plane displacements P� are much greater than the
out-of-plane P3. These correspond to four series of vibrations, as
will be seen presently. Following the terminology introduced by
Mindlin �6�, one class is the series of thickness-extension vibra-
tions characterized by

P��x1,x2,�,t� = 0, P3�x1,x2,�,t� = q���	3�x1,x2,t� �5�

where q��� corresponds to the odd and even solutions of the one-
dimensional �1D� through-thickness variational problem given by

�D3
�q��
q�� − �30

2 q
q
 = 0 �6�

with

�30 =
�3h

c0

The series with odd solutions is denoted by L� �symmetric
thickness-extension vibrations�, and that with even solutions by
F� �antisymmetric thickness-extension vibrations�. As expected,
the branch F��0� corresponds to the low-frequency vibration.

Another class is the series of thickness-shear vibrations charac-
terized by

P��x1,x2,�,t� = p�����v��x1,x2,t�, P3�x1,x2,�,t� = 0 �7�

where p����� correspond to the odd or even solutions of the 1D
variational problems given by

�p��
TDs

�
p�� − �s0
2 pT
p
 = 0 �8�

where

�s0 = ��10 0

0 �20
� = �

�1h

c0
0

0
�2h

c0

�
Note that here and throughout the shell development, we express
our results in terms of the compact matrix form to make our
procedure simpler. As expected, p��� is the 2�2 matrix, the com-
ponents of which are p��. Similar to the thickness-extension
branches, the series with the odd solutions is denoted by F	 �asym-

Fig. 1 Overview of the dynamic shell analysis
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metric thickness-shear vibrations�, and that with even solutions by
L	 �symmetric thickness-shear vibrations�. Analogously, the
branch L	�0� corresponds to the low-frequency vibration.

Here the characteristic eigenvalues �t0
2 and �s0

2 run through a
countable set of values; however, indices are attached neither to
them nor to the corresponding eigenvectors in order to avoid com-
plicating the notation. Since q��� and p����� are determined
uniquely up to a constant from Eqs. �6� and �8�, the following
normalization conditions can be imposed:

�q2
 = 1, �pTp
 = I �9�

where I is the 2�2 identity matrix. The constants are chosen so
as to simplify later the changes of variable �see Sec. 5�. Further-
more, one can also determine so-called cut-off frequencies �� and
�3 from the appropriate values of �30 and ��0, respectively, ac-
cording to

�3 =
�30c0

h
, �� =

��0c0

h
�10�

Here the values of �� and �3 in these estimations are obviously
taken for the same branch as the corresponding function. Based on
this, the branches F��0� and L	�0� correspond to the low-
frequency vibrations in Eq. �1�. On the other hand, since �3, ��

→ as h→0, all the remaining branches correspond to high-
frequency vibrations with Eq. �2�. Finally, using the results of the
primary step under the low-frequency vibration analysis, the po-

sition vector R̂ in the deformed configuration can be represented
as

R̂�x1,x2,�,t� = R�x1,x2,t� + h�B3�x1,x2,t� + Pi�x1,x2,�,t�Bi�x1,x2,t�
�11�

where

P�x1,x2,�,t� = q���	3�x1,x2,t�B3�x1,x2,t�

+ p�����v��x1,x2,t�B��x1,x2,t�

+ wi�x1,x2,�,t�Bi�x1,x2,t� �12�

Here wi is the unknown 3D warping functions for the high-
frequency vibration approximations. Unlike the three constraints
used in the low-frequency vibrations, the three new constraints
may be needed to calculate wi, which will be discussed in detail in
Sec. 3.

According to Berdichevsky and Le �4�, the propagation time for
a perturbation through the thickness for these branches of vibra-
tions is of the same order as the period of vibrations. Therefore,
contrary to the methodology of most published plate and shell
theories, it is impossible to assume the displacements to be only
polynomials in h� even in a primary approximation �see Eq. �11��.
For instance, the lowest branch of the thickness-shear vibrations
F	�0� is associated with vibrations for which a shift of the trans-
verse fiber into a sinusoidal half-wave occurs for homogeneous
isotropic shells. Generalized Reissner–Mindlin plate/shell theories
are representative of this type of theories that take this kind of
vibration into account. However, the utilization of a linear dis-
placement field over the thickness instead of the correct sinusoid
in the generalized Reissner–Mindlin plate/shell theory does not
lead to a satisfactory quantitative prediction of the actual behavior
of homogeneous isotropic shells �1,3�.

Analogously, having made the above approximations, using Eq.
�11� instead of the position vector expressed as a series with re-
spect to h� and eliminating the effects of the low-frequency vibra-
tions from the 3D strain and velocity fields and the work done by
applied loads, Eq. �3� can be rewritten as a nondimensional high-
frequency energy functional in terms of

2K = �0��Ṗ	
TṖ	 + Ṗ3

2��
 �13�

and

2P = �0���1

h
P	�� + e�P3;� + CR

s P	 + h�CR
s �e�P3;�

+ CR
s P	��T

Ds
��1

h
P	�� + e�P3;� + CR

s P	 + h�CR
s �e�P3;�

+ CR
s P	�� +

1

h2D3
��p3���2 +

2

h
�I�P	;� + CR

e P3 + h��H�P	;�

+ C̃R
e P3��TDe3

� P3�� + �I�P	;� + CR
e P3 + h��H�P	;�

+ C̃R
e P3��TDe

��I�P	;� + CR
e P3 + h��H�P	;� + C̃R

e P3����
− �	

TP	
+ − �3P3

+ − �	
TP	

− − �3P3
− − ��	

TP	
 − ��3P3
 �14�
with

H1 = �− k11 0 0

0 − k11 0
�T

, H2 = �0 − k22 0

0 0 − k22
�T

�15�

C̃R
e = �k11

2 0 k22
2 �T �16�

and �•�;�= �1 /A��� �•� /�x� and

� = 1 + 2h�H + �h��2K �17�

where H= �k11+k22� /2 and K=k11k22 are called the mean and the
Gaussian curvatures of the surface, respectively.

Now one is ready to use the variational-asymptotic method
�VAM� to solve the unknown warping field for high-frequency
vibrations asymptotically.

3 First Approximation (First-Order Warping Field)
Each branch is characterized by some specific frequency �.

According to Berdichevsky �2�, it turns out that the branches pos-
sess a remarkable property: They are orthogonal in the kinetic and
strain energy densities in the first approximation. This means that
in the first approximation, vibrations of one type do not interact
with those of other types; the possibility appears for investigating
the vibrations of one branch independently of the vibrations of the
others �except for the classical branches describing low-frequency
vibrations�. As before, the variations of v� and 	3 should vanish at
t1 and t2, just as in the case of low-frequency vibration analysis.
Concerning the boundary conditions at the shell edge, we first
consider the clamped edge, for which

p��v� = 0, q	3 = 0 at � S � �− 1/2 1/2� �18�
Based on the above fact, we can find the next refinement for the
warping fields in the branches associated with the thickness-
extension vibrations �the series L� or F��. At this step in a certain
asymptotic expansion we seek the stationary wi of Eq. �3� in the
form

P� = w��x1,x2,�,t�, P3 = P30 + w3�x1,x2,�,t� �19�
with

P30 = q���	3�x1,x2,t�

where 	3 is regarded as one branch of this series as a given func-
tion of x� and t satisfying the condition due to Eq. �18�, namely,

	3 = 0 at � S �20�

while w� and w3 are unknown functions that should be determined
by the variational-asymptotic procedure. Without any loss of gen-
erality, the following constraint can be imposed on w3:

�q���w3
 = 0 �21�

which corresponds to the assumption that 	3= �q���P3
. Let us
substitute Eq. �19� into the nondimensional kinetic and potential
energies per unit area as Eqs. �13� and �14�, and then the total
energy functional Eq. �3�. With the help of VAM and keeping the
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leading terms that depend on wi and the leading cross terms in Eq.
�3�, we obtain the functional

2L = �0��ẇ	
Tẇ	 + ẇ3

2 + 2Ṗ30ẇ3 + 4H�w3ẇ3�
 − �0� 1

h2 �w	��
T Ds

�w	��

+ D3
�w3��

2 + 2D3
�P30��w3��� +

2

h
�w	��

T Ds
�e�P30;� − w	

TI�
TDe3

� P30��;�

+ 2HD3
��P30w3�� + w3��

T De3
�TCR

e P30 + w3CR
eTDe3

� P30��� �22�

Here the underlined terms will cancel out each other because of
Eq. �6�. The double-underlined term was obtained using integra-
tion by parts, and the terms evaluated at the boundary vanish due
to Eq. �20�. Thus, the above 3D problem can be reduced to a 1D
through-the-thickness problem that does not depend on partial de-
rivatives of w� and w3 with respect to x� and t, and the last �
enters only as a parameter. First, the stationary points w� of Eq.
�22� are easily found to be

w� = hs�����	3;� �23�

where s����� are solutions of the variational problems

�s���
T Ds

�
s��� + qe�
TDs

�
s��� − q��De3
�TI�
s� − �30

2 s�
T
s�
 = 0 �24�

and where s� are the 2�1 column matrices, components of which
are s��. Next, let us seek the correction w3 to P3, which has the
form

w3 = h�R���	3 �25�

where �R��� is the solution of the variational problem

�D3
��R��
�R�� + 2H�D3

�q��
�R�� + qCR
eTDe3

� 
�R�� + q��De3
�TCR

e 
�R

− �30
2 ��R
�R + 2H�q
�R�
 = 0 �26�

subject to the constraint

�q�R
 = 0 �27�

As expected, the in-plane warping functions turn out to be much
smaller than the out-of-plane displacement in the long-wavelength
regime and are O�hq̂ / l�, and the refinement w3 to the original
out-of-plane displacement O�q̂� is of the order O�hq̂ /R�. Summa-
rizing, we have the following distribution of the warping fields
over the thickness in the series of thickness-extension vibrations
�in the first approximation�:

P� = hs�����	3;�, P3 = q���	3 + h�R���	3 �28�
Analogously, we also find the next refinement for the warping

fields in the branches associated with the thickness-shear vibra-
tions �the series L	 or F	�. Given v�, we seek w� and w3 in the first
approximation for one branch of the following series:

P��x1,x2,�,t� = P�0 + w��x1,x2,�,t�, P3�x1,x2,�,t� = w3�x1,x2,�,t�
�29�

with

P�0 = p�����v��x1,x2,t�

in which, without any loss of generality, v� are regarded as one
branch of this series as given functions of x� and t, satisfying the
following condition due to Eq. �18�:

v� = 0 at � S �30�

Here w� and w3 should be determined by the variational-
asymptotic procedure and satisfy the constraints

�p�����w�
 = 0 �31�

Using the same procedure as in the previous step, the stationary
point w3 is easily found to have the form

w3 = hr�����v�;� �32�

where r����� are the solutions of the variational problems given
by

�r���
T D3

�
r��� + pTI�
TDe3

� 
r��� − p��
TDs

�e�
r� − �s0
2 r�

T
r�
 = 0

�33�

Here r� are the 1�2 row matrices, components of which are r��.
As before, for the thickness-shear vibrations, the out-of-plane
warping function is much smaller than the in-plane displacements
and is of the order O�hq̂ / l�. Again, the stationary point w� is of
the order O�hq̂ /R� and should have the form

w� = h�R��v� �34�

where �R����� are solutions of the variational problems

��R��
T Ds

�
�R�� + 2H�p��
TDs

�
�R�� + p��
TDs

�CR
s 
�R + pTCR

sTDs
�
�R��

− �s0
2 ��R

T
�R + 2H�pT
�R�
 = 0 �35�

where �R is the 2�2 matrix, elements of which are �R��. Thus,
for the series of thickness-shear vibrations �within the first ap-
proximation�, we have

P� = p�����v� + h�R�����v�, P3 = hr�����v�;� �36�

4 Total Energy Functional for Long-Wavelength High-
Frequency Vibration Analysis

Before proceeding to hyperbolic short-wavelength extrapola-
tion in Sec. 5, it is convenient to find the total Lagrangian of each
branch in the long-wavelength regime. Let the 3D displacements
P� and P3 be expressed by the infinite series of branches given
above, where 	3 and v� are arbitrary functions in terms of x� and
t.

We first examine a branch in the series of thickness-extension
vibrations, displacements of which are given by the asymptotic
formulas in Eq. �28�. Substituting Eq. �28� into Eqs. �13� and �14�,
keeping the leading quadratic terms and the leading cross terms,
and using Eqs. �6�, �24�, and �26�, we obtain the total energy
functional L3 defined as in Eq. �3� for thickness-extension vibra-
tions within the first approximation

L3 =
1

2
�0�	̇3

2� −
1

2
�0�� 1

h2�30
2 + It�	3

2 + K��
t 	3;�	3;�� + Ft	3

�37�
where the coefficients are of the form

It = �CR
eTDe

�CR
e q2 + KD3

���q���2 + 4HCR
eTDe3

� ��qq���

+ 2C̃R
eTDe3

� ��qq��� − D3
��R��

2 + �30
2 ��R

2 − K��q�2�


K��
t = �e�

TDs
�e�q2 + s���

T Ds
�e�q − s�

TI�
TDe3

� q��


Ft = �3q+ + �3q− + ��3q
 �38�
Analogously, we turn to a branch in the series of thickness-

shear vibrations, displacements of which are given by the
asymptotic formulas in Eq. �36�. Again substituting Eq. �36� into
Eq. �3�, discarding the small quadratic terms and the small cross
terms �i.e., of order h /R and h / l compared with unity�, and using
Eqs. �8�, �33�, and �35�, we get the total energy functional Ls
defined as in Eq. �3� for thickness-shear vibrations

Ls =
1

2
�0�v̇	

Tv̇	� −
1

2
�0�v	

T� 1

h2�s0
2 + Is�v	 + v	;�

T Kv	;�� + FsTv	

�39�

where the coefficients are given by
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Is = �pTCR
sTDs

�CR
s p + K�2p��

TDs
�p�� + 4H�p��

TDs
�CR

s p + 2�p��
TDs

�CR
s CR

s p

− �R��
T Ds

��R�� + �s0
2 ��R

T�R − K�2pTp�


K��
s = �pTI�

TDe
�I�p + pTI�

TDe3
� r��� − p��

TDs
�e�r�


Fs = �	
Tp	

+ + �	
Tp	

− + ��	
Tp	
 �40�

Finally, we obtain the asymptotically correct, 2D dynamical equa-
tions for the long-wavelength high-frequency regime up to the
first approximation, Eqs. �37� and �39�. Unlike published shell
theories of Kaplunov �7� derived by the asymptotic method of
Goldenveizer, and of Le �5� derived by the VAM, those equations
are applicable to shells in which each layer is made of monoclinic
material. However, for the case of homogeneous and isotropic
materials, Eqs. �37� and �39� coincide with those of Le �5�.

It is interesting to note, following Refs. �8,9�, that although Eqs.
�37� and �39� are the correct equations in an asymptotic analysis,
this is not sufficient to guarantee the positive definiteness of de-
rived stiffness coefficients. Figure 2 shows graphs of K��

t and
K��

s as functions of Poisson’s ratio � for the branches L��0� and
L	�1� for homogeneous and isotropic materials. For example, as
�→0.33 from below, the coefficient K��

t →−. To address this
anomaly we need an additional independent logical process. The
so-called hyperbolic short-wavelength extrapolation is chosen for
this step.

5 Hyperbolic Short-Wavelength Extrapolation
Generally speaking, the question of how to implement short-

wavelength extrapolation in the general case is still open to inves-
tigation. However, it is natural to demand asymptotic equivalence
in the long-wave regime for various possible short-wave extrapo-
lations.

Let us now consider vibrations of the composite laminated shell
with either clamped or free boundary conditions at its edge. Fol-
lowing Ref. �8�, we assume that the vibrations we are going to
describe can be regarded with sufficient accuracy as the superpo-
sition of the branches F��0�, F	�0�, L	�0�, L��0�, and L	�1�. The
branches F��0� and L	�0� correspond to low-frequency vibrations,
but the others correspond to thickness �high-frequency� vibrations
with the first branches. There are two main reasons to choose
those branches. First, these branches possess the lowest cut-off
frequencies, so that the dominant vibrational energy is concen-
trated in them. Second, the necessity of also including L	�1� into
the present theory is dictated by its strong interaction with the
branch L��0�, and obviously F	�0� is also strongly coupled with
the branch F��0� �6,10�. Therefore, the dynamic equations con-

tain eight unknown functions of the in-plane coordinates and time:

ū�, ū3, 	̄�, 	̄3, and �̄� �the symbols without the bar are reserved
for the functions in the final equations�. Thus, we can write an
asymptotically exact first approximation of the deformed position

vector R̂ as

R̂ = R + h�B3 + h�D̄1����̄ + hD̄2����h�̄��B3 + g�����	̄�B�

+ hn�����	̄�;�B3 + h�R�����	̄�B� + p������̄�B�

+ hr������̄�;�B3 + h�R������̄�B� + q���	̄3B3 + hs�����	̄3;�B�

+ h�R���	̄3B3 �41�

where

R = r + u �42�

From Eq. �42�, the functions ū� and ū3 describe average shell
displacements in the long-wavelength, low-frequency branches,
which have been studied in detail in Part I. According to Ref. �11�,
the 2D generalized strain and velocity fields are expressed in

terms of ū� and ū3. The functions D̄1 and D̄2 can be calculated as
the results of the first approximation step under the low-frequency

vibration analysis. According to Ref. �6�, the functions 	̄� de-
scribe the thickness-shear branch F	�0�. The associated functions
g����� are the first odd solutions of the variational equations

�g��
TDs

�
g�� − �s1
2 gT
g
 = 0 �43�

while n�� and �R�� are the solutions of Eqs. �33� and �35�, re-
spectively, in which p should be replaced with g. Moreover, we
choose for g����� another normalization condition to simplify the
subsequent changes of variables as follows:

��g��

��2


= I �44�

Finally, the functions 	̄3 and �̄� describe the thickness branches
L��0� and L	�1�, respectively, while the functions q��� and p�����
are the solutions of Eqs. �6� and �8� derived for these branches
previously. We substitute Eq. �41� into Eq. �3�, discarding small
terms in the asymptotic sense. Using the results of Secs. 3 and 4,
after lengthy but otherwise straightforward calculations, one ob-
tains Eq. �3� with

2K = �0�V̄	
TV̄	 + V̄3

2 + 	̇̄	
T�gTg
	̇̄	 + 	̇̄3

2 + �̇̄	
T�̇̄	 + 2�h�̄	�T���Tg
	̇̄	

+ ��Tp
�̇̄	� + 2h�V̄	
T�s�
	̇̄3;� + V̄3�n�
	̇̄	;� + V̄3�r�
�̇̄	;�

+ 	̇̄3�qD1
�̇̄ + 	̇̄3�qD2
�h�̇̄� + 	̇̄3�qna
	̇̄	;� + 	̇̄3�qr�
�̇̄	;�

+ 	̇̄	
T�gTs�
	̇̄3;� + �̇̄	

T�pTs�
	̇̄3;��� �45�

and

2P = �0��1

h
�2

�	̄	
T��1

2�gTg
�	̄	 + �2
2	̄3

2 + �̄	
T��3

2��̄	� + 	̄	;�
T K��

1 	̄	;�

+ K��
2 	̄3;�	̄3;� + �̄	;�

T K��
3 �̄	;� + 	̄	

TI1	̄	 + I2	̄3
2 + �̄	

TI3�̄	

+ �̄T�Dc
�
�̄ + 2�̄T��Dc

�
�h�̄� + �h�̄�T��2Dc
�
�h�̄� + 2�1

h
�

��	̄	
T�g��

TDs
�s���
	̄3;� + �̄	

T�p��
TDs

�s���
	̄3;� + 	̄3�q��D3
�D1��
�̄

+ 	̄3�q��D3
�D2��
�h�̄� + 	̄3�q��D3

�n���
	̄	;� + 	̄3�q��D3
�r���
�̄	;�

+ �̄T�De3
� q��
	̄3 + �h�̄�T��De3

� q��
	̄3 + 	̄3�q��De3
�TI�g
	̄	;�

+ 	̄	
T�g��

TDs
�e�q
	̄3;� + 	̄3�q��De3

�TI�p
�̄	;� + �̄	
T�p�

TDs
�e�q
	̄3;��

Fig. 2 Graph of K��
t and K��

s as functions of �
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+ 2��̄T�D1��
T De3

�TI�g + De
�I�g
	̄	;� + ��̄�T�D1��

T D3
�n���

+ De3
� n���
	̄	;� + �̄T�D1��

T De3
�TI�p + De

�I�p
�̄	;�

+ ��̄�T�D1��
T D3

�r��� + De3
� r���
�̄	;� + �h�̄�T�D2��

T De3
�TI�g

+ �De
�I�g
	̄	;� + �h�̄�T�D2��

T D3
�n��� + �De3

� n���
	̄	;�

+ �h�̄�T�D2��
T De3

�TI�p + �De
�I�p
�̄	;� + �h�̄�T�D2��

T D3
�r���

+ �De3
� r���
�̄	;� + 	̄	

T�g��
TDs

�e�D1
�̄;� + 	̄	
T�g��

TDs
�e�D2
�h�̄;��

+ �̄	
T�p��

TDs
�e�D1
�̄;� + �̄	

T�p��
TDs

�e�D2
�h�̄;���� − F1T	̄	

− F2	̄3 − F3T�̄	 �46�

In Eqs. �45� and �46�, the coefficients �1
2, �2

2, and �3
2 are the

eigenvalues of the variational problems for g, q, and p, respec-
tively; while K��

1 , K��
2 , K��

3 , I1, I2, I3, F1, F2, and F3 are calcu-
lated from the corresponding coefficients according to Eqs. �38�
and �40�. Here the superscripts 1, 2, and 3 are not exponents, but
rather are symbols referring to the associated coefficients for g, q,
and p, respectively.

By using the normalization from Eqs. �9� and �44�, one can
derive the changes of variable in the following way. At first, the
changes of variable for V�, V3, 	3, and �� can be established for
Eq. �45�. On the other hand, based on Eq. �46� one can make the
changes of variable for ��� and 	�. See Ref. �9� for the entire
procedure in detail of how to derive the changes of variable for
V�, V3, 	3, ��, ���, and 	�.

Finally, the changes of variable are defined as

V	 = V̄	 + ha�
1 	̇̄3;�

V3 = V̄3 + h�a�
5 	̇̄	;� + b�

1 �̇̄	;��

� = �̄ + hā��
1 	̄3;��

h� = h�̄ + d̄�
4	̄	;� + ē�

6 �̄	;�

	3 = 	̄3 + h�a2�̄ + b2�h�̄� + b�
3	̄	;� + a�

3 �̄	;��

		 =
1

h
�	̄	 + h�b̄�

4	̄3;�� + h2�d̄�
5�h�̄;����

�	 = �̄	 + hā�
4	̄3;� �47�

where

a�
1 = �s�
, a�

5 = �n�
, b�
1 = �r�


a��
1 = I�a�

1 , d�
4 = �C−T�d�

4 , e�
6 = �C−T�e�

6

C = ��2Dc
�
, d�

4 = ��Dc
�I�g
, e�

6 = ��Dc
�I�p


a2 = �qD1
, b2 = �qD2
, b�
3 = �qn�


a�
3 = �qr�
, b�

4 = �c1
−T�b�

4 , d�
5 = ��1c1�−Td�

5

c1 = �gTg
, b�
4 = �gTs�
, d�

5 = �g��
TDs

�e�D2


a�
4 = �pTs�
 �48�

Retaining the leading terms in V�, V3, ���, ���, 	�, 	3, and v�
and extrapolating the total energy functional to the short-
wavelength regime, we arrive finally at the 2D refined energy
functional with kinetic and strain energies per unit area, valid for

a wide range of frequencies for a composite laminated shell with
monoclinic symmetry layers

J = h�
t1

t2�
s

�K − P�dSdt �49�

where

K = 1
2�0�V	

TV	 + V3
2 + �h	̇	�Tc1�h	̇	� + 	̇3

2 + �̇	
T�̇	� �50�

and

P =
1

2
�0��TA� + 2�TB�h�� + �h��TC�h�� + �1

h
�2

��h		�TI1�h		�

+ I2	3
2 + �	

TI3�	� + 2�1

h
����TSe2 + �h��TSc2 + �h		;��TS�

12

+ �	;�
T S�

32�	3 + ��h		�TS�
21 + �TS�

23�	3;�� + �h		;��TK��
1 �h		;��

+ K��
2 	3;�	3;� + �	;�

T K��
3 �	;�� − F1T�h		� − F2	3 − F3T�	 �51�

For simplicity of the derivation we use the following notation:

d1 = �De3
� q��
, e1 = ��De3

� q��
, e�
2 = �q��De3

�TI�g


e�
8 = �g��

TDs
�e�q
, d�

2 = �q��De3
�TI�p
, d�

3 = �p��
TDs

�e�q


e�
7 = �p��

TDs
�e�D2
 �52�

Using Eqs. �48� and �52�, all the coefficients are defined as

A = A − �2
2�a2Ta2� − 2�d1a2�

B = B − �2
2�a2Tb2� − �d1b2� − �a2e1�

C = C − �2
2�b2Tb2� − 2�e1b2�

I1 = �1
2c1 + �h�2I1, I2 = �2

2 + �h�2I2, I3 = �3
2 + �h�2I3

Se2 = d1, Sc2 = e1, S�
12 = e�

2T − �d�
4Te1�, S�

32 = d�
2T − �e�

6Te1�

S�
12 = e�

8 , S�
23 = d�

3 , F1 = F1, F2 = F2, F3 = F3

K��
1 = K��

1 + �a�
5T�1

2a�
5� + �b�

3T�1
2b�

3� + 2��2
2�b2d�

4�Tb�
3 + �d�

4e1b�
3�

+ �b2d�
4�T�e�

2 − e�
8T�� − ��d�

4Cd�
4� + �2

2�b�
3Tb�

3�

+ �2
2�b2d�

4�Tb2d�
4� − 2��d�

4Te1b2d�
4� + b�

3T�e�
2 − e�

8T��

K��
2 = K��

2 + �2
2��a�

1Ta�
1� + �b�

4Tb�
4� + �a�

4Ta�
4�� + 2��a��

1T d1� + �e�
2

− e�
8T�b�

4 + �d�
2 − d�

3T�a�
4� − ��b�

4T�1
2c1b�

4� + �a�
4T�3

2a�
4T��

− 2��d�
4b�

4�Te1 + �e�
6a�

4�Te1�

K��
3 = K��

3 + �b�
1T�3

2b�
1� + �a�

3T�3
2a�

3� + 2��2
2�b2e�

6�Ta�
3 + �e�

6Te1a�
3�

+ �b2e�
6�T�d�

2 − d�
3T� + �e�

7e�
6�� − ��e�

6TCe�
6� + �2

2�a�
3Ta�

3�

+ �2
2�b2e�

6�Tb2e�
6� − 2��e�

6Te1b2e�
6� + a�

3T�d�
2 − d�

3T�� �53�

While transforming Eqs. �45� and �46� to Eqs. �50� and �51� terms

of the type, �h�̄	�TC1�h	̇	� and �h�̄	�TC2�̇	, �TC3�h		;��,
�TC4�	;�, �h��TC5�h		;��, and �h��TC6�	;� in Eqs. �50� and �51�
are neglected as small compared with the remaining terms in the
long-wavelength regime �8�, where Ci with i=1,2 , . . . ,6 are the
coefficients corresponding to those cross term functions.

Despite the fact that the theory involves more unknown func-
tions than in the classical theory of shells, it provides much more
predictive capability: The theory is no longer a zeroth-order ap-
proximation theory, but is instead a refined theory. Indeed, it de-
scribes in an asymptotically exact manner the vibrations of a shell
for both low-and high-frequencies in the long-wavelength regime,
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and it can represent qualitatively the 3D stress states in the short-
wavelength regime. Note that the coefficients of the present 2D
theory can be determined by solving the 1D through-thickness
problems, viz., Eqs. �6�, �8�, �24�, �26�, �33�, �35�, and �43�.

Now we digress here to point out that the present theory is
different from the Berdichevsky–Le theory mainly in the follow-
ing two aspects. First, as mentioned before, the Berdichevsky–Le
theory is restricted to geometrically linear theory with a homog-
enous and isotropic material, while the present theory is the in-
trinsic formulation for a monoclinic laminated composite material.
The latter is good for both geometrically linear and nonlinear shell
analyses. In particular, the nonlinearities generally appear in the
velocity and strain measures, in terms of which the kinetic and
strain energies are quadratic. Second, in the Berdichevsky–Le
theory, all terms of the type containing �h		;�� are neglected due
to additional analysis, which shows that a hyperbolic short-
wavelength extrapolation describing exactly the curvature of the
dispersion curve near the cut-off frequency of the branch F	�0�
does not exist �8�. However, those terms are proved to be impor-
tant in reconstructing the 3D stresses on the basis of 2D results
�12�. Therefore, we retain this term in the present theory.

As the primary type of validation procedure, if one considers an
elastic shell made of a homogeneous isotropic material, all the
formulas derived here can be reproduce to those in Refs. �5,8�,
which indirectly verifies that derivation.

6 Conclusions
The present development represents a new contribution, as

there is no published work on variational-asymptotic modeling of
composite shells for a wide range of frequencies and expressed in
analytical form. The main contributions of the present work to-
ward developing geometrically nonlinear dynamic composite shell
models valid over a wide range of frequencies with sufficient
accuracy are the following.

1. The combination of �a� the compact and elegant representa-
tion of the dynamic intrinsic formulation, including nonlin-
ear generalized strain and velocity measures �13�, �b� the
rigorous dimensional reduction procedure of the variational-

asymptotic method �1�, and �c� the hyperbolic short-wave
procedure of the nontrivial extrapolation �4,5� is itself a con-
tribution.

2. An asymptotically correct shell model was constructed that
enables one to analyze shell dynamic response for vibrations
in the low-frequency long-wavelength area, including the
high-frequency regime, and to achieve accurate and positive
definite strain and kinetic energy functionals for all wave-
lengths in relatively simple form.

3. To provide insight and guidance for developing the finite-
element-based shell model, an analytical procedure for one-
dimensional through-thickness analysis for laminated com-
posite materials was presented. A practical finite-element-
based procedure for the through-thickness analysis will be
presented in a later paper.
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M-Integral for Calculating
Intensity Factors of Cracked
Piezoelectric Materials Using the
Exact Boundary Conditions
In this paper, the M-integral is extended for calculating intensity factors for cracked
piezoelectric ceramics using the exact boundary conditions on the crack faces. The pol-
ing direction is taken at an angle to the crack faces within the plane. Since an analytical
solution exists, the problem of a finite length crack in an infinite body subjected to crack
face traction and electric flux density is examined. In this case, poling is taken parallel to
the crack faces. Numerical difficulties resulting from multiplication of large and small
numbers were treated by normalizing the variables. This problem was solved with the
M-integral and displacement-potential extrapolation methods. With this example, the
superiority of the conservative integral is observed. The values for the intensity factor
obtained with the M-integral are found to be more accurate than those found by means of
the extrapolation method. In addition, a crack parallel to the poling direction in a four-
point bend specimen subjected to both an applied load and an electric field was analyzed
and different electric permittivity values in the crack gap were assumed. It is seen that the
electric permittivity greatly influences the stress intensity factor KII and the electric flux
density intensity factor KIV. The absolute value of these intensity factors increases with an
increase in the value of the electric permittivity in the crack. The influence of the permit-
tivity on KI is rather small. �DOI: 10.1115/1.2998485�

Keywords: intensity factors, piezoelectric material, boundary conditions, finite element
method, M-integral, electric permittivity

1 Introduction

Piezoelectric ceramics are widely used as sensors and actuators
in smart structures, despite the absence of fundamental under-
standing of their fracture behavior. Piezoceramics are brittle and
susceptible to cracking. Because the reliability of these devices is
important, there has been tremendous interest in studying their
fracture and failure behavior. Electrically induced mechanical
cracking is a serious degradation phenomenon, which is not yet
fully understood. To this end, accurate methods are required for
calculating stress and electric flux density intensity factors in
these materials, using the exact boundary conditions on the crack
faces.

One of the key problems in properly analyzing the fracture
behavior of piezoelectric ceramics is the selection of the correct
boundary conditions on the crack faces. The mechanical boundary
conditions are usually formulated as in classical elasticity theory.
However, the assumption of a traction free crack was recently
contradicted by Landis �1�. There were four possible sets of
boundary conditions presented in the literature, i.e., impermeable,
permeable, semipermeable, and exact boundary conditions.

Parton �2� first attempted to define the electric boundary condi-
tions on the crack faces. He assumed that the crack was perme-
able, so that the electric flux density component Dn and the elec-
tric potential � are continuous across the crack faces, where n
denotes the normal to the crack faces. Traction free crack condi-
tions were taken, leading to the boundary conditions

�+ = �−, Dn
+ = Dn

−, �ijnj = 0 �1�

where the superscripts + and − denote the upper and lower crack
faces, �ij is the stress tensor, and ni is the unit normal vector.

A second possibility is that of an impermeable crack. Here, the
fact that the permittivity of piezoelectric ceramics is 103 times
higher than that of the environment �air or vacuum� within the
crack is considered. Deeg �3� used this condition in his analyses of
dislocations and cracks in piezoelectric materials. The normal
component of the electric flux density was set to zero on the upper
and lower crack faces and there is no traction on the crack sur-
faces, hence

Dn
+ = Dn

− = 0, �ijnj = 0 �2�

In this case, the crack is impermeable to electric fields, i.e., the
crack faces are charge free and thus the electric flux density van-
ishes inside the crack. These assumptions were examined using an
antiplane crack as an example �4�.

The above assumptions were improved by considering the elec-
tric permeability of air in the crack gap �5�. The boundary condi-
tions on the crack faces were taken to be

Dn
+ = Dn

−, Dn
+�un

+ − un
−� = − �a��+ − �−�, �ijnj = 0 �3�

where un
+ and un

− are the normal displacements of the upper and
lower crack faces, respectively, and �a is the dielectric permittiv-
ity of the air within the crack gap. These boundary conditions
characterize a semipermeable crack �6�.

The energy release rate for a Griffith crack was considered by
McMeeking �7�. Both impermeable and semipermeable boundary
conditions were analyzed. It was shown for semipermeable con-
ditions that the energy release rates calculated far from and in the
neighborhood of the crack tip differed. As may be expected, the
energy release rate for impermeable conditions differed from the
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other two results. It was suggested that both experimental and
further theoretical work are required to explore this paradox.

To solve this conundrum, Landis �1� proposed a new set of
boundary conditions. These conditions consist of closing tractions
on the crack surfaces, in contrast with the three former sets of
boundary conditions. This traction is the Maxwell stress arising
from the electric field within the crack gap. These boundary con-
ditions are called the exact boundary conditions. The electric
boundary conditions are the same as for the semipermeable con-
ditions in Eq. �3�, namely,

Dn
+ = Dn

− = − �a��+ − �−

un
+ − un

− � �4�

Instead of the traction free conditions

�nn
+ = �nn

− =
1

2
�a��+ − �−

un
+ − un

− �2

�5�

where �nn is the normal component of the stress on the crack
faces closing the crack.

Several techniques for extracting intensity factors for piezoelec-
tric ceramics were presented in the literature. These methods in-
clude the displacement-potential correlation �8–12�, displacement-
potential extrapolation �8–11�, stress, electric flux density and
electric field extrapolation �13,14�, crack closure �9–11�, two- and
three-dimensional J-integral �15,16�, and M-integral �17,18�. Im-
permeable, permeable, and semipermeable crack face boundary
conditions were employed. A more detailed description of these
studies may be found in Ref. �18�.

The M-integral for calculating intensity factors in dynamic
problems with permeable and impermeable cracks was presented
by Enderlein et al. �17�. It should be noted that the need for
normalization was not examined, since KII was not calculated.
Recently, several benchmark problems for impermeable crack
face conditions were examined to demonstrate the accuracy of the
M-integral and the displacement-potential extrapolation methods
by Banks-Sills et al. �18�. Numerical difficulties from the multi-
plication of large and small numbers were treated by normalizing
the variables. The values of the intensity factors obtained with the
M-integral were observed to be more accurate than those found by
means of the extrapolation method �18�.

Although the studies mentioned above deal with the calculation
of intensity factors for piezoelectric ceramics, none of them used
the exact boundary conditions in obtaining intensity factors. The
main objective of this study was to develop an iterative frame-
work for analyzing a realistic case of a crack with the exact
boundary conditions applied and to obtain intensity factors for it.
The accuracy of the M-integral is investigated for cracks that are
parallel to the poling direction through a problem of a finite length
crack in an infinite plate. Given traction and electric flux density
are applied to the crack faces. In addition, a four-point bend speci-
men is analyzed with the poling parallel to the crack faces, with
different values of the electric permittivity examined. In this in-
vestigation, the M-integral is extended for two-dimensional prob-
lems of a piezoelectric material using the exact boundary condi-
tions on the crack faces, as given in Eqs. �4� and �5�. This method
is known to be rather accurate for mechanical loads applied to
linear elastic materials and was also shown to be accurate for
piezoelectric materials with impermeable crack conditions �18�.

In Sec. 2, the governing equations are presented. The
M-integral for calculating intensity factors using the exact bound-
ary conditions on the crack faces is described in Sec. 3. In Sec. 4,
numerical calculations are presented, which were carried out on
some example problems to demonstrate the accuracy of the
method and necessary mesh refinement. In addition, a four-point
bend specimen was analyzed with poling parallel to the crack
faces.

2 Governing Equations
The governing equations for analyzing elasto-electric problems

in piezoelectric materials are presented in this section. The piezo-
electric effect can be expressed in terms of constitutive relations,
that may be derived from basic thermodynamic principles �19,20�.
The constitutive equations presented here are for linear behavior.
Under high electrical or mechanical fields, a piezoelectric material
behaves nonlinearly. The latter subject is not treated in this inves-
tigation. There are four equivalent constitutive representations
commonly used in the theory of linear piezoelectricity to describe
a coupled interaction between the mechanical and electric vari-
ables. Each type has its own different set of independent variables
and corresponds to a different thermodynamic function. One way
of writing these equations is

�ij = Cijkl
E �kl − esijEs �6�

Di = eikl�kl + �is
� Es �7�

where �ij is the stress tensor, Cijkl
E is the elastic stiffness tensor at

a constant electric field, �kl is the strain tensor, esij is the piezo-
electric coupling tensor, Es is the electric field vector, Di is the
electric flux density vector, and �is

� is the permittivity tensor at a
constant strain. Note that Eqs. �6� and �7� are written in the
e-form. It may be observed that Cijkl is a fourth order tensor with
the symmetries

Cijkl = Cklij = Cjikl = Cijlk �8�

eijs is a third order tensor with the symmetry

eijs = eisj �9�

�is is a second order symmetric tensor and i , j ,k , l ,s=1,2 ,3. It
should be pointed out that the derivation of Eqs. �6� and �7� is
based on the electric enthalpy density function

h = 1
2Cijkl

E �ij�kl − 1
2�ij

� EiEj − esijEs�ij �10�

In the absence of body forces and surface charges, the equilib-
rium equations and Gauss’ equation are given by

� ji,j = 0 �11�

Di,i = 0 �12�
The strain-displacement and electric field-potential equations are
given by

2�ij = ui,j + uj,i �13�

Ei = − u4,i �14�

where i , j=1,2 ,3.
In order to employ the M-integral, the first term of the

asymptotic expressions for the stress, displacement, and electric
fields, as well as the electric potential, is required. A complete set
of these expressions was presented in Appendix A of Ref. �18�.

3 M-Integral
The M-integral is employed here for calculating intensity fac-

tors subjected to the exact boundary conditions on the crack faces,
as given in Eqs. �4� and �5�. Quarter-point elements are used near
the crack tip to model the square-root singularity of the stress,
electric flux density, and electric fields. The conservative
M-integral was first presented by Yau et al. �21� for mixed mode
problems in isotropic materials and by Wang et al. �22� for aniso-
tropic materials in which x3=z=0 is a symmetry plane, as shown
in Fig. 1.

The energy release rate is given by �23�

G = 1
2kTL−1k �15�

where k is the intensity factor vector, namely,
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kT = �KII,KI,KIII,KIV� �16�

and the superscript T represents transpose. The electric flux den-
sity intensity factor is denoted by KIV. In Eq. �15�, L is one of the
Barnett–Lothe tensors, namely,

L−1 = R�iAB−1� �17�

where R represents the real part of the quantity in parentheses and
i=�−1. The components of matrix A are given in Eqs. �A10�–
�A14� in Ref. �18� and matrix B is given in Eq. �A26� of that
reference.

It has been shown that the energy release rate coincides with the
path independent J-integral �23�, which is given by �4�

J =�
�

�hn1 − Tiui,1 + DiniE1�ds �18�

where � is a path beginning at the lower crack face and ending at
the upper crack face, h is the electric enthalpy density given in Eq.
�10�, ni is the unit outward normal vector to �, Ti=�ijnj is the
traction, ui and Di are the displacement and energy flux density
fields, and E1 is the electric field in the x1-direction. Indicial no-
tation is used in Eq. �18�. By path independence, the J-integral
may be redefined in the plane as

J ≡ lim
r→0

∫
C3

� (hn1 − Tβuβ,1 + DβnβE1) ds

=

∫
C1

� (hn1 − Tβuβ,1 + DβnβE1) ds +

∫
C2

→(σβ2uβ,1 − D2E1) dx1

+

∫
C4

← (σβ2uβ,1 − D2E1) dx1. �19�

where Ci, i=1, . . . ,4 is illustrated in Fig. 2, C3 is an infinitesimal
path with r approaching zero, and �=1,2. It may be noted again
that indicial notation has been used for convenience in all of the
equations. However, all calculations are made with reference to
the crack tip coordinates x ,y with the material properties rotated
to this coordinate system �see Ref. �18� for details�.

Using Green’s theorem, Eq. �19� may be rewritten as

J =

∫
A

[(σβγuγ,1 − DβE1 − hδ1β) q1,β] dA

+

∫
C2

→ (σβ2uβ,1 − D2E1) dx1 +

∫
C4

← (σβ2uβ,1 − D2E1) dx1

+

∫
C6

→ (σβ2uβ,1 − D2E1) q1dx1 +

∫
C7

← (σβ2uβ,1 − D2E1) q1dx1

�20�
where � is the Kronecker delta, C2, C4, C6, and C7 are paths along
the crack faces �see Fig. 2�, �=1,2, and the function q1 is defined
for finite element analysis as

q1 = 	
m=1

8

Nm�	,
�q1m �21�

where Nm are the finite element shape functions of an eight noded
isoparametric element and 	 and 
 are the coordinates in the par-
ent element �for further details, see Ref. �24��. The calculation of
the J-integral is carried out in a ring of elements surrounding the
crack tip �the area A in Eq. �20�� and along the crack faces inside
and outside the ring �see Fig. 2�. The elements within the ring
move as a rigid body. For each of these elements q1 is unity, so
that the derivative of q1 with respect to xj is zero. For all elements
outside the ring, q1 is zero and again the derivative of q1 is zero.
For elements belonging to the ring, the vector q1m in Eq. �21� was
chosen so that the virtual crack extension does not disturb the
relative nodal point positions in their new locations; for example,
a regular element with nodes at the midsides contains only mid-
side nodes after distortion.

To obtain the M-integral, two equilibrium solutions are as-
sumed and superposed; this is possible for a material that behaves
linearly. Thus, define

��� = ���
�1� + ���

�2� �22�

��� = ���
�1� + ���

�2� �23�

u� = u�
�1� + u�

�2� �24�

E� = E�
�1� + E�

�2� �25�

D� = D�
�1� + D�

�2� �26�

The intensity factors associated with the superposed solutions are

KI = KI
�1� + KI

�2� �27�

KII = KII
�1� + KII

�2� �28�

KIV = KIV
�1� + KIV

�2� �29�

Note that mode III deformation is omitted here, since only in-
plane deformation is assumed.

Solution �1� is the sought after solution; the fields are obtained
by means of a finite element calculation. Solution �2� consists of
three auxiliary solutions, which are obtained from the first term of
the asymptotic solution in Eqs. �A27� and �A29� in Ref. �18�. The
intensity factors of solutions �2a�, �2b�, and �2c� are given, re-
spectively, by

KI
�2a� = 1, KII

�2a� = 0, KIV
�2a� = 0 �30�

KI
�2b� = 0, KII

�2b� = 1, KIV
�2b� = 0 �31�

�

������
���	
����

�

�

�
�

��

��

Fig. 1 Crack tip and material coordinates

�

�

��
�� �

����

��
�

��

Fig. 2 Integration paths for J-integral calculation
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KI
�2c� = 0, KII

�2c� = 0, KIV
�2c� = 1 �32�

As described in Ref. �18�, some of the elements of the matrix L,
given in Eq. �17�, differ by 19 orders of magnitude, which may
lead to large errors in the results. Following Ref. �18�, the vari-
ables are normalized as

r̂ =
r

L
, u1 =

û1

L
, u2 =

û2

L
, u4 =

�22û4

e26L
�33�

�̂ij =
�ij

EA
, �̂ij = �ij, Êi =

�22

e26
Ei, D̂i =

Di

e26
�34�

K̂I =
KI

EA
�L

, K̂II =
KII

EA
�L

, K̂IV =
KIV

e26
�L

�35�

where L is a characteristic length of the problem, e26 is a con-
tracted piezoelectric constant, �22 is a permittivity, and EA is
Young’s modulus in the poling direction.

By the usual manipulation, it is possible to show that �18�

M�1,2�� =
1

2
��k̂�1��TL̂−1k̂�2�� + �k̂�2���TL̂−1k̂�1�� �36�

where

k̂ = V−1k �37�

k is given in Eq. �16�. In Eq. �37�,

V = 

EA

�L 0 0 0

0 EA
�L 0 0

0 0 GT
�L 0

0 0 0 e26
�L

� �38�

and GT is the shear modulus perpendicular to the poling direction,
the superscripts �1� and �2�� represent the unknown solution and
the auxiliary solutions, respectively, and �=a ,b ,c. The matrix
L−1 is normalized as

L̂−1 = VL−1V �39�
In this way, the diagonal and off-diagonal elements are the same
order of magnitude.

On the other hand, based on Eq. �20�, the M-integral is derived
as

M (1,2α) =

∫
A

[
Ĉ

(1,2α)
1 − Ĉ

(1,2α)
2 − ĥ(1,2α)δ1β

] ∂q1

∂x̂β

dÂ

+

∫
C2

→
(
σ̂

(1)
β2 û

(2α)
β,1 − c3D̂

(1)
2 Ê

(2α)
1

)
dx̂1

+

∫
C4

←
(
σ̂

(1)
β2 û

(2α)
β,1 − c3D̂

(1)
2 Ê

(2α)
1

)
dx̂1

+

∫
C6

→
(
σ̂

(1)
β2 û

(2α)
β,1 − c3D̂

(1)
2 Ê

(2α)
1

)
q1dx̂1

+

∫
C7

←
(
σ̂

(1)
β2 û

(2α)
β,1 − c3D̂

(1)
2 Ê

(2α)
1

)
q1dx̂1

�40�

where Ĉ1
�1,2��, Ĉ2

�1,2��, c3, and ĥ�1,2�� are given by

Ĉ1
�1,2�� = �̂��

�1�û�,1
�2�� + �̂��

�2��û�,1
�1� �41�

Ĉ2
�1,2�� = c3�D̂�

�1�Ê1
�2�� + D̂�

�2��Ê1
�1�� �42�

c3 =
e26

2

�22EA
�43�

ĥ�1,2�� = �̂��
�1��̂��

�2�� − c3D̂�
�1�Ê�

�2�� �44�

and Â=A /L2. It may be observed that Eq. �40� differs from the
expression of the M-integral, given by Banks-Sills et al. �18�, in

that it has four additional terms arising from the traction and elec-
tric flux density on the crack faces. Furthermore, the first term of
the asymptotic solution for ��2 and D2 on the crack faces is zero.
Hence, since ��2

�2��=D2
�2��=0, additional expressions do not appear

in Eq. �40�. Note that Eqs. �41� and �42� are given incorrectly in
Ref. �18�.

The two expressions for M�1,2�� in Eqs. �36� and �40� are
equated. The expressions in Eqs. �30�–�32� are sequentially sub-
stituted into these equations to obtain three expressions for the

three unknown intensity factors K̂I
�1�, K̂II

�1�, and K̂IV
�1�. The integral in

Eq. �40� is calculated numerically in various rings about the crack
front. The field quantities of solution �1� are obtained from a finite
element analysis of the problem at hand.

4 Numerical Results
In this section, the M-integral is employed to calculate intensity

factors for cracks in piezoelectric material, using the exact bound-
ary conditions on the crack faces. The finite element program
ANSYS �25� is used to obtain the displacement field and the electric
potential. The elements exploited here are isoparametric, contain-
ing eight nodal points. Singular, quarter-point square elements are
used at the crack tip.

The M-integral is evaluated in rings surrounding the crack tip.
The five rings used in this study are shown in Fig. 3. The numbers
designate the rings. In the calculations, it was observed that the
results in path 1 were not as accurate as the rest of the paths. In
addition, sometimes there were small differences in path 2. Con-
sequently, the results shown in the sequel are an average of paths
3–5.

The material used in this study is PZT-5H from Morgan Electro
Ceramics. Material properties were given by Berlincourt and
Krueger �26� and are presented in Table 1. The poling direction is
the x1-axis.

Although the presentation here has been general, in Secs. 4.1
and 4.2, several in-plane problems are solved with the poling di-
rection taken parallel to the crack faces; that is, in the x-direction
�see Fig. 1�. Other poling directions may be easily considered.

Table 1 Material properties for PZT-5H †26‡

Property C11
E �GPa� C22

E �GPa� C55
E �GPa�

Value 117 126 23.0

Property C12
E �GPa� C23

E �GPa�
Value 84.1 79.5

Property e11 �C /m2� e12 �C /m2� e26 �C /m2�
Value 23.0 −6.55 17.0

Property �11
� �F/m� �22

� �F/m�
Value 1.30095�10−8 1.5045�10−8

�����

�
�

�
�

	

Fig. 3 Mesh and integration paths about the crack tip
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Two problems are solved: a finite length crack in an infinite body
�Griffith crack� and a four-point bend specimen. For the first prob-
lem, given traction and electric flux density are prescribed on the
crack faces. For the second problem, the exact boundary condi-
tions are imposed on the crack faces.

4.1 Griffith Crack. In this section, poling is within the
xy-plane and parallel to the crack faces with =0, as shown in
Fig. 1. In this problem, the intensity factors for a finite length
crack in an infinite body �see Fig. 4� subjected to boundary con-
ditions on the crack faces are determined. The results are com-
pared with analytic solutions. This problem was chosen in order to
examine the effect of prescribing boundary conditions on the
crack faces, as must be done when the exact boundary conditions
are used. Accuracy of the solutions and mesh refinement require-
ments are considered.

To model an infinite body, the normalized height and crack
length are taken as h /W=1 and a /W=0.05, respectively. For
a /W=0.1, the body is not sufficiently infinite. The applied bound-
ary conditions on the crack faces include �yy =−��=−1 MPa and
Dy =−D�=−0.01 C /m2, applied simultaneously. The analytical
solution for a finite length crack in an infinite body, subjected to
the far field tensile stress �yy =�� and electric flux density Dy
=D�, is �27�

KI = ����a, KIV = D���a �45�
Based on Eq. �45�, the solution for the applied boundary condi-
tions on the crack faces is given by

KI = ����a, KIV = D���a �46�
Two meshes were employed here. The coarse and fine meshes

are illustrated in Figs. 5�a� and 5�b�, respectively, with details
surrounding the crack tips shown in Fig. 6. It may be noted that an
enlargement of the area near the crack tip in Fig. 6�b� resembles
the mesh in Fig. 6�a�. The coarse mesh contains 4400 eight noded
isoparametric elements and 13,420 nodal points, whereas the fine
mesh contains 14,000 eight noded isoparametric elements and
42,400 nodal points. The ratio of the crack tip element length to
crack length is � /a=10−2 for the coarse mesh and 10−4 for the fine
mesh.

With the M-integral, the intensity factors normalized in Eq. �35�
are computed. These are normalized again to yield

K̃I =
KI

����a
, K̃IV =

KIV

D���a
�47�

First, the path independence of the M-integral is examined. To this
end, the results for this problem are presented in Tables 2 and 3. It
may be observed in Table 2, that the normalized stress intensity

factor K̃I is path independent to five significant figures along paths
2–5 �see Fig. 3� for both the coarse and fine meshes. For the

normalized intensity factor K̃IV, it may be seen in Table 3 that path

independence is not as good as that for K̃I. For the fine mesh there
is improvement to four significant figures along paths 3–5.

In Table 4, normalized intensity factors are presented for the
mixed mode problem. Values calculated by means of the
M-integral are averaged from paths 3–5. In addition, values ob-
tained using the displacement-potential extrapolation �DPE�
method are presented for comparison �for details of this method

see Ref. �18��. The stress intensity factor K̃I is the same for the
coarse and fine meshes and differs from the analytic value of unity
by 0.4% when calculated by means of the conservative integral.
With extrapolation, an error of 0.9% occurred for the coarse mesh

�

�
�

�

�

�

�

Fig. 4 Griffith crack problem
���


��
�

���


��
�

Fig. 5 Meshes for the plate in Fig. 4: „a… coarse and „b… fine
meshes

��� ���


��
�
��
�

Fig. 6 Meshes in the neighborhood of the crack tip for the
infinite plate: „a… coarse and „b… fine meshes
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and 0.7% for the fine mesh. For the value of the normalized in-

tensity factor K̃IV, better results are obtained from the fine mesh
and the M-integral. For the coarse mesh, an error of 0.5% oc-
curred, while an error of 0.1% occurred for the fine mesh. With
DPE, errors of 1.2% and 0.7% occurred for the coarse and fine
meshes, respectively. With this example, the superiority of the
conservative integral is observed. The values of the intensity fac-
tor obtained with the M-integral are found to be more accurate
than those found by means of the extrapolation method. In addi-

tion, the intensity factor K̂II, which should be equal to zero, is also
presented. Its values are O�10−8� for the fine and coarse meshes
for both methods.

4.2 Four-Point Bend Specimen. The methodology in this
study was developed to enable the calibration of specimens that
will be used in testing. To this end, a four-point bend specimen
was analyzed. The poling �P� direction is parallel to the specimen
width and a crack is situated parallel to this direction, as shown in
Fig. 7. Following the ESIS procedure �28�, the dimensions of the
specimen are chosen as L=45 mm, S1=40 mm, S2=20 mm, and
the width W=4 mm. In the finite element analyses, the thickness
is B=1 m, whereas its actual dimension is 3 mm. The force ap-
plied to the 3 mm specimen is F=850 N. The applied electric
field along the length of the specimen is taken to be EL
=0.1 MV /m and −0.1 MV /m. It should be noted that the coer-
cive field for this material is EC�0.8 MV /m. In the analyses, the
variables are normalized, as in Eqs. �33�–�35�. Tests were reported
by Jelitto et al. �29� for a four-point bend specimen shown in Fig.
7 with dimensions different from those used for the calculations
here. Poling perpendicular to the crack faces was considered. In
that study, stress/electric flux density extrapolation was employed
to determine the relevant intensity factors with both impermeable

and permeable crack face conditions.
Finite element analyses were carried out for normalized crack

lengths 0.2�a /W�0.3. These crack lengths were chosen to cor-
respond to those prescribed in the ESIS procedure �28�. Plane
strain conditions were assumed, meaning that not only is the strain
component �3=0 but also the electric field component E3=0. Two
types of meshes were employed to check for convergence. The
coarse meshes contained between 7392 and 8040 eight noded iso-
parametric elements and 22,581 and 24,537 nodal points depend-
ing on the crack length; whereas, the fine mesh contained 141,800
elements and 436,683 nodal points. Analyses were carried out
with the fine mesh for a /W=0.2. The mesh in the vicinity of the
crack for a /W=0.2 for both meshes is shown in Fig. 8. The fine
mesh contains many more elements outside this region especially
along the crack faces. For both refinement levels, the normalized
element length is � /a=2.5�10−4. The elements in the region of
the crack tip are square. Meshes for other crack lengths are simi-
lar. Mesh refinement about the crack tip with a normalized ele-
ment length of � /a=2.5�10−5 was also examined.

The intensity factors are normalized as

K̃I/II =
KI/II

�b
��a

, K̃IV =
KIV

DL
��a

�48�

where

�b 
3FS2

BW2 , DL  �22EL �49�

F and EL are the applied force �850 N� and electric field in the
longitudinal direction of the specimen �0.1 MV /m�, respectively,
B and W are the thickness and width of the specimen, respectively,
S2 is the inner span length �see Fig. 7�, and �22 is the permittivity
in the y-direction.

Different values of the permittivity within the crack gap �a
were considered. These values were between 0 and 40�0, where
�0 is the permittivity of a vacuum �8.85�10−12 F /m�. Note that
when �a=0, impermeable boundary conditions are obtained.
Schneider et al. �30� measured the electrical potential difference

Table 2 The stress intensity factor K̃I along various paths for
the infinite body problem in Fig. 4

Path Coarse mesh Fine mesh

1 0.9912 0.9780
2 1.0042 1.0042
3 1.0042 1.0042
4 1.0042 1.0042
5 1.0042 1.0042

Table 3 The electric flux density intensity factor K̃IV along vari-
ous paths for the infinite body problem in Fig. 4

Path Coarse mesh Fine mesh

1 1.0088 0.9955
2 1.0071 1.0015
3 1.0057 1.0014
4 1.0049 1.0013
5 1.0044 1.0012

Table 4 Calculated intensity factors for the Griffith crack „see
Fig. 4…

K̃I K̂II K̃IV

M-integral
Coarse mesh 1.004 O�10−8� 1.005
Fine mesh 1.004 O�10−8� 1.001
DPE
Coarse mesh 1.009 O�10−8� 1.012
Fine mesh 1.007 O�10−8� 1.007

�� ��

�
 
 �

!

��
�

�

Fig. 7 Four-point bend specimen

"#$"%

Fig. 8 Mesh in the vicinity of the crack for both meshes of the
four-point bend specimen shown in Fig. 7 with a /W=0.2
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across cracks formed by indentation in piezoelectric transducer
�PZT� specimens. It was found for this particular problem that the
permittivity of the medium within the cavity was 40�0.

The analyses were conducted by means of an iterative proce-
dure, for which the normal electric flux density Dy and stress �yy
were calculated at each step from the normal displacement and
electric potential values, which were obtained on the crack faces
during the previous step, as

Dy�k+1�
+ = Dy�k+1�

− = − �a��+ − �−

uy
+ − uy

− �
�k�

�50�

�yy�k+1�
+ = �yy�k+1�

− =
1

2
�a��+ − �−

uy
+ − uy

− �
�k�

2

�51�

where k is the iteration number. For the first iteration, imperme-
able crack boundary conditions were enforced, so that the values
of the normal electric flux density and stress on the crack surfaces
were zero. Fifty to one hundred iterations were carried out for
each analysis, with a maximum tolerance of 0.02% obtained for
both normal electric flux density and stress. It may be noted that
the convergence of the problems depends on the value of �a; the
lower the value of �a, the faster the convergence. The Maxwell
stresses in the piezoelectric body were neglected, since the Max-
well stress in the media inside the crack gap is three orders of
magnitude larger than that in the piezoelectric body.

For a /W=0.2, the differences between all normalized intensity
factors for the coarse and fine meshes were negligible. Hence,
convergence was achieved. Good convergence was also achieved
with refinement about the crack tip. Path independence was ex-

amined, as well. It was observed that the K̃I values agree from
three to five significant figures, depending on the permittivity val-
ues, for paths 3–5 for coarse and fine meshes. The differences in

path 2 are slight if at all. The values of K̃IV agree from two to four
significant figures for paths 3–5. Results from the first path agree
to one significant figure with those from the remainder of the

paths for both K̃I and K̃IV. Hence, the first path should be excluded

in the analysis. The stress intensity factor K̃II is O�10−3�-O�10−5�;
therefore, path independence was not considered.

Results obtained by means of the coarse mesh and an average
of paths 3–5 are presented in Fig. 9. It may be observed that the
permittivity strongly influences the behavior of KII and KIV for the
exact boundary conditions. Moreover, an increase in permittivity
is followed by an increase in the absolute value of these intensity
factors. On the other hand, the influence of the permittivity on KI

is rather small. For the normalized stress intensity factor K̃I, the
direction of the electric field does not affect the results, whereas,

for K̃II and K̃IV the behavior is symmetric with respect to the

electric field direction. The differences between K̃II and K̃IV val-
ues obtained with the application of �a=0, �a=�0, and �a=5�0
cannot be seen in Fig. 9. However, these differences exist and they
are more than 2% between the impermeable assumption and �a
=�0 and around 10% between �a=�0 and �a=5�0.

The contribution of each intensity factor to the crack sliding
and opening displacements �ux and �uy, respectively, may be
calculated. Expressions for these displacements are obtained by
substituting values of �= �� into Eq. �A27� in Ref. �18� to obtain

�ux = 4� r

2�
�L11

−1KII + L12
−1KI + L14

−1KIV� �52�

�uy = 4� r

2�
�L21

−1KII + L22
−1KI + L24

−1KIV� �53�

where Lij
−1 are the components of the matrix L−1, given in Eq.

�17�. According to Eqs. �52� and �53�, the contribution of each of
the intensity factors to the displacements may be found. For ex-

ample, the contribution of KI to the crack sliding displacement is
L12

−1KI multiplied by the factor outside the parentheses in Eqs. �52�
and �53�, etc. The contribution of each intensity factor to the crack
sliding and opening displacement with respect to the permittivity
for a /W=0.25 with the application of a positive electric field of
EL=0.1 MV /m and an applied force of F=850 N �for the actual
specimen thickness� is presented in Tables 5 and 6, respectively.
The calculations were carried out for r=0.1 mm and the units of
the values in Tables 5 and 6 are in millimeters. It may be observed
that only KI affects the crack opening displacement, whereas both
KII and KIV affect the crack sliding displacement for all permit-
tivities. It is seen that the greater the permittivity, the greater the
value of the contribution to the crack sliding displacement. It may
also be pointed out that KIV contributes more to the crack sliding
displacement than KII. This is a result of the anisotropy of the
material.

�����
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Fig. 9 Normalized intensity factors as a function of normalized
crack length a /W as obtained from the fine mesh for the speci-
men in Fig. 7: „a… K̃I, „b… K̃II, and „c… K̃IV
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5 Summary and Conclusions
In this study, a conservative M-integral was extended for cal-

culating intensity factors when the exact boundary conditions are
applied to the crack faces in piezoelectric materials. A Griffith
crack was considered in which the crack is parallel to the poling
direction and given tractions and electric flux density were pre-
scribed on the crack faces. Results were obtained by means of the
displacement-potential extrapolation method and the conservative
M-integral, which enable mode separation. Accurate results were
found. With this example, the superiority of the M-integral with
respect to the displacement-potential extrapolation method was
shown.

Intensity factors for a four-point bend specimen were calculated
for applied load and electric field. This problem was analyzed in
order to illustrate the calibration of specimens for carrying out
fracture tests in piezoelectric materials. An iterative finite element
analysis was carried out to apply the exact boundary conditions on
the crack faces. The crack was taken parallel to the poling direc-
tion. Different values of the permittivity within the crack gap were
considered. It was shown that the permittivity strongly affects KII
and KIV, which are coupled. The higher the permittivity, the
higher the absolute value of these intensity factors. On the other
hand, the permittivity hardly affects KI.

The conservative M-integral may be used to properly calibrate
specimens when carrying out tests for measuring failure param-
eters of piezoelectric materials.
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Nomenclature
a � crack length

c3 � material constant combination in Eq.
�43�

eijk � components of the piezoelectric coupling
coefficient

ei� � contracted piezoelectric coupling
coefficient

h � electric enthalpy density
k � vector of intensity factors

k � iteration number
� � element length at the crack tip
ni � unit outward normal to the path �
qi � normalized virtual crack extension
r � distance from the crack tip

ui, i=1,2 ,3 � displacement components
un

+ and un
− � normal displacement of the upper and

lower crack faces
u4 � electric potential

xi, i=1,2 ,3 � material coordinate system
x ,y ,z � local crack tip coordinate system

A and B � matrices dependent on material
properties

B � specimen thickness
Cijkl � components of the stiffness tensor

Ĉ1
�1,2�� and Ĉ2

�1,2��
� expressions in Eqs. �41� and �42�

D� � electric flux density applied to the crack
faces

D� � far field electric flux density
Di � components of the electric flux density
DL � longitudinal electric flux density

Dn
+ and Dn

− � normal electric flux density of the upper
and lower crack faces

EA � Young’s modulus in the poling direction
Ei � components of the electric field
EL � longitudinally applied electric field
F � applied force

GT � shear modulus perpendicular to the pol-
ing direction

G � energy release rate
J � J-integral

Kj, j=I , II , III � stress intensity factors
KIV � electric flux density intensity factor

L � characteristic length, specimen length
L � one of the Barnett–Lotte tensors

M�1,2�� � M-integral with 1 as the desired solution
and 2� �=a ,b ,c as the auxiliary
solution

Ni � finite element shape functions
P � poling
R � real part of a complex quantity

S1, S2 � specimen span lengths
Ti � traction components
W � width of the four-point bend specimen
�ij � Kronecker delta
�ij � strain components
�ij � permittivity components
�a � permittivity within the crack gap
�0 � permittivity of a vacuum

	 ,
 � coordinates in the parent element
�� � stress applied on the crack faces
�� � far field stress
�b � bending stress
�ij � stress components

�nn
+ and �nn

− � normal closing stress at the upper and
lower crack faces

�+ and �− � electric potential at the upper and lower
crack faces

 � poling angle relative to the x-direction
� � J-integral path �line�
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Analytical Modeling and Vibration
Analysis of Partially Cracked
Rectangular Plates With Different
Boundary Conditions and Loading
This study proposes an analytical model for vibrations in a cracked rectangular plate as
one of the results from a program of research on vibration based damage detection in
aircraft panel structures. This particular work considers an isotropic plate, typically
made of aluminum, and containing a crack in the form of a continuous line with its center
located at the center of the plate and parallel to one edge of the plate. The plate is
subjected to a point load on its surface for three different possible boundary conditions,
and one examined in detail. Galerkin’s method is applied to reformulate the governing
equation of the cracked plate into time dependent modal coordinates. Nonlinearity is
introduced by appropriate formulations introduced by applying Berger’s method. An ap-
proximate solution technique—the method of multiple scales—is applied to solve the
nonlinear equation of the cracked plate. The results are presented in terms of natural
frequency versus crack length and plate thickness, and the nonlinear amplitude response
of the plate is calculated for one set of boundary conditions and three different load
locations, over a practical range of external excitation frequencies.
�DOI: 10.1115/1.2998755�

1 Overview

Thin plate structures have gained special importance and nota-
bly increased application in recent years. Complex structures such
as aircraft, ships, steel bridges, sea platforms, etc., all use metal
plates. For example, it has been observed that plate panels on the
tips of aircraft wings are mainly under transverse pressure and are

often subjected to normal and shear forces, which act in the plane
of the plate. The plate may not behave as intended if it contains
even a small crack or form of damage, and such small distur-
bances can then create a complete loss of equilibrium and cause
failure.

The literature has been reviewed for research on cracked plates
under tension and bending. Khadem and Rezaee �1� introduced a
new technique for vibration analysis of cracked plates and consid-
ered the effect of compliance due to bending only. Okamura et al.
�2� obtained the lateral deflection, the load carrying capacity, and
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the stress intensity factor of a rectangular cross section single-
edge-cracked column with hinged ends under compression. They
compared an uncracked column with a cracked column and exam-
ined the effect of a crack on the load carrying capacity. Lateral
deflection decreased with the ratio of crack length to column
width and the ratio of column width to column length. The effect
was generally small, if the crack was short and the column was
long. In particular, these authors considered the effect of compli-
ance due to bending and ignored the effect of compliance due to
rotation induced by the axial load. Khadem and Rezaee �3� estab-
lished an analytical approach for damage in the form of a crack in
a rectangular plate by the application of external loading for dif-
ferent boundary conditions. They concluded from their results that
the presence of a crack at a specific depth—and depending upon
its location—would affect each of the natural frequencies differ-
ently. Krawczuk et al. �4� applied a versatile numerical approach
for the analysis of wave propagation and damage detection within
cracked plates. Wu and Shih �5� theoretically analyzed the dy-
namic instability and nonlinear response of cracked plates sub-
jected to periodic in-plane load. The results indicated that the
stability behavior and the response of the system are governed by
the crack location of the plate, the aspect ratio of the plate, the
conditions of in-plane loading, and the amplitude of vibration.
Moreover, increasing the crack ratio, i.e., the ratio of the crack
length to the length of the edge parallel to the crack, and/or the
static component of the in-plane load decreases the natural fre-
quency of the system. Irwin �6� examined a part-through crack in
a plate subjected to tension and derived a relation for the crack
stress-field parameter and the crack extension force at the bound-
aries of a flat elliptical crack. Rice and Levy �7� employed two-
dimensional generalized plane stresses and used Kirchhoff’s plate
bending theories with a continuously distributed line-spring to
represent a part-through crack, and chose compliance coefficients
to match those of an edge-cracked strip in-plane strain. The line of
discontinuity was of length 2a, and the plate was subjected to
remote uniform stretching and bending loads along the far sides of
the plate. These authors computed the force and moment across
the cracked section to determine the stress intensity factor, and the
solution to the problem was characterized in terms of the Airy

stress function. Their results showed that Krs / K̄rs �where Krs is the

stress intensity factor for an all-over crack, and K̄rs is the stress
intensity factor of an edge crack in-plane strain for the same rela-
tive depth lo /h, and for remote tensile or bending load� ap-
proaches unity with an increase in the ratio of crack length to plate
thickness 2a /h. Furthermore, at small values of relative depth
lo /h, the relative changes in stress intensity factors approaches
unity for small values of 2a /h.

The solutions obtained based on linear models are considered
adequate for many practical and engineering purposes although it
is recognized that linearized equations usually provide no more
than a first approximation. Linearized models of vibrating systems
are inadequate in cases where displacements are not small. In
addition, problems treated by nonlinear theory exhibit new phe-
nomena, for example, the dependence of frequency of vibration
on amplitude that cannot be predicted by means of linear theories.
Moreover, an example of such a source of nonlinearity is a crack
within a plate, which can lead to profound changes in the vibra-
tional response of the system. In this study, much previous work
has been considered together, leading to a proposal for a new
analytical model for the vibration analysis of a cracked plate. In
Ref. �8� the authors developed an approximate analytical solution
for damage detection in an aircraft panel structure modeled as a
cracked isotropic plate without the application of a load, essen-
tially for free vibration. The literature does not appear to contain
any substantial references to analytical models for cracked plates
undergoing forced vibration. The work presented here considers
classical plate theory and includes an arbitrarily located crack
within a rectangular plate. The crack consists of a continuous line
and certain simplifying assumptions are made in order to get an

initial tractable solution to the vibration problem. Principally, the
effects of rotary inertia and through-thickness shear stress effects
are neglected. Berger’s formulation is used to generate the non-
linear term within the model differential equation of motion. An
approximate analytical solution of the equation for the vibration in
the cracked plate for given boundary conditions is found by the
method of multiple scales, followed by the presentation of some
numerical results and conclusions.

2 Governing Equation of the Rectangular Plate and
Crack Term

The classical form of the governing equation of the rectangular
plate is rigorously treated in Refs. �9–11�. Here, the equilibrium
principle is followed for the derivation of the governing equation
of the cracked rectangular plate, in which a crack is present at the
center and parallel to the x-direction of the plate, as depicted in
Fig. 1, and consists of a continuous line of length 2a. The follow-
ing basic assumptions are summarized.

1. The plate is made of a perfectly elastic, homogeneous, iso-
tropic material and has a uniform thickness h, which is con-
sidered small in comparison with its other dimensions.

2. All strain components are small enough to allow Hooke’s
law to hold.

3. The normal stress component in the direction transverse to
the plate surface is small compared with other stress com-
ponents and is neglected in the stress-strain relationship.

4. Shear deformation is neglected in this case, and it is as-
sumed that sections taken normal to the middle surface be-
fore deformation remain plane and normal to the deflected
middle surface of the plate.

5. The effect of the rotary inertia, shear forces, and in-plane
force in the y-direction, i.e., ny and nxy are neglected to make
the problem more tractable.

Based on these assumptions, the final version of the governing
equation of the cracked plate takes the following form:

D� �4w

�x4 + 2
�4w

�x2 � y2 +
�4w

�y4 � = − �h
�2w

�t2 + nx

�2w

�x2 +
�2M̄y

�y2 + n̄y

�2w

�y2

+ Pz �1�

where D=Eh3 /12�1−�2�, Pz is the load per unit area acting at the
surface, � is the density of the plate, nx is the in-plane or mem-

brane force M̄y, and n̄y represents the moment and in-plane force
per unit length due to the inclusion of crack at the center of the
plate, respectively.

In Eq. �1�, two new terms M̄y and n̄y—and caused by the
crack—are introduced by the application of the equilibrium prin-

Fig. 1 Line spring model representing the bending and tensile
stresses for a part-through crack of length 2a after Ref. †7‡
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ciple based on classical plate theory. The formulation of these
crack terms is obtained from the model of Rice and Levy �7� �in
Eqs. �10� and �11��. The approach of Rice and Levy �7� is based
on Kirchoff’s bending theory for thin plates, and the assumptions
involved in this theory lead to important simplifications in the
governing equations. Actually, the results are presented for the
stress intensity factors in part-through cracked plates, provided
that the crack is not too deep. These stress relationship are used
and then by making use of Eqs. �8� and �9�, a new relationship for
the force and moment caused by the crack was developed, which
is dealt in the following section.

Later, Pz in Eq. �1� is replaced by a point load P̄z based on the
application of the appropriate delta function in Eq. �24� to make it
compatible with the experimental configuration. Furthermore, in
practice, it is straightforward to implement this type of loading.

3 Crack Terms Formulation
Rice and Levy �7� obtained an approximate relation for nominal

tensile and bending stresses at the location of the crack. These two
relations are taken after some rearrangement, and make use of the
relationships within Eqs. �8� and �9� from which it can be deduced
that mrs=6�rs. A representation of these stresses is given in Fig. 1.

�̄rs =
2a

�6�tb
o + �tt

o��1 − �2�h + 2a
�rs �2�

and

m̄rs =
2a

3��bt
o

6
+ �bb

o ��3 + ���1 − ��h + 2a

mrs �3�

We define �̄rs and m̄rs as the nominal tensile and bending stresses,
respectively, at the crack location and on the surface of the plate,
�rs and mrs are the nominal tensile and bending stresses at the far
sides of the plate, h is the thickness of the plate, a is the half-crack
length, and �bb

o , �tt
o, �bt

o =�tb
o are the nondimensional bending

compliance, stretching compliance, and stretching-bending com-
pliance coefficients at the crack center, respectively.

This shows that the nominal tensile and bending stresses at the
crack location can be regarded as a function of the nominal tensile
and bending stresses at the far side of the plate. It is worth noting
that Okamura et al. �2� and Khadem and Rezaee �3� also restricted
their analysis to the effects of bending compliance. These three
compliance coefficients depend on the crack depth d to plate
thickness h and vanish when d=0. It is shown in Ref. �7� that, in
general, the compliance coefficient is a function of the ratio of
crack depth to plate thickness. After suitable nondimensionaliza-
tion, the compliance coefficients at the center of the crack take
this form.

���
o = 1.1547��� �4�

where �,�=b , t are intermediate variables used in Ref. �7� for
algebraic simplification. The appropriate compliance coefficients
��� may then be calculated from the following relation, noting
that they are valid only for �=d /h values within the range 0.1–
0.7. In the present analysis, we take �=0.6, leading to calculation
of the compliance coefficients �1,2,7� as follows:

�tt = �2�1.98 − 0.54�1 + 18.65�2 − 33.70�3 + 99.26�4 − 211.90�5

+ 436.84�6 − 460.48�7 + 289.98�8� �5�

�bb = �2�1.98 − 3.28�1 + 14.43�2 − 31.26�3 + 63.56�4 − 103.36�5

+ 147.52�6 − 127.69�7 + 61.50�8� �6�

�bt = �tb = �2�1.98 − 1.91�1 + 16.01�2 − 34.84�3 + 83.93�4

− 153.65�5 + 256.72�6 − 244.67�7 + 133.55�8� �7�
This means that uniformly distributed tensile and bending stresses

are at the two sides of the crack location, and these tensile and
bending stresses can be expressed in terms of tensile and bending
force effects. Therefore, we can write the tensile and bending
stresses at the far sides as �7�

�rs =
nrs

h
=

1

h�−h/2

+h/2

�rs�x,y,z�dz �8�

mrs =
6

h2 Mrs =
6

h2�
−h/2

+h/2

z�rs�x,y,z�dz �9�

where r ,s=1,2 are intermediate variables required for algebraic
simplification. nrs and Mrs are the force and moment per unit
length in the y-direction at the far sides of the plate, respectively,
and �rs�x ,y ,z� is the stress state.

The force and moment were calculated from two-dimensional
plane stress-plate bending theory, with the cracked section repre-
sented as a continuous line-spring having its compliance matched
to that of the edge-cracked strip in-plane strain. Accordingly, we
can write Eqs. �2� and �3� in the form of force and moment as

n̄rs =
2a

�6�tb
o + �tt

o��1 − �2�h + 2a
nrs �10�

and

M̄rs =
2a

3��bt
o

6
+ �bb

o ��3 + ���1 − ��h + 2a

Mrs �11�

where n̄rs and M̄rs are the force and moment per unit length in the
y-direction at the crack location of the plate, respectively.

It is evident from the work of Rice and Levy �7� that when two
forces are acting on the plate element to stretch and bend it, the
results of their work show that the Airy stress function satisfies the
compatibility condition in a region where the body force field is
zero. Here, it is very useful to mention that the present theory and
the model of the Rice and Levy are based on classical plate theory,
therefore the force and moment obtained from Eqs. �10� and �11�
are the required terms and are added into the cracked plate model
with a negative sign because damage causes a reduction in the
overall stiffness of the plate structure, a phenomenon that can also
be seen in the literature, such as the work of Khadem and Razaee
�1,3� and Wu and Shih �5�. Therefore, we can write

n̄y � − n̄rs = −
2a

�6�tb
o + �tt

o��1 − �2�h + 2a
nrs �12�

and

M̄y � − M̄rs = −
2a

3��bt
o

6
+ �bb

o ��3 + ���1 − ��h + 2a

Mrs �13�

Substituting the values of n̄y and M̄y from Eqs. �12� and �13� into
Eq. �1�, the governing equation of the plate with crack extends to
the following form:

D� �4w

�x4 + 2
�4w

�x2 � y2 +
�4w

�y4 �
= − �h

�2w

�t2 + nx

�2w

�x2 + Pz

−
2a

3��bt
o

6
+ �bb

o ��3 + ���1 − ��h + 2a

�2Mrs

�y2

−
2a

�6�tb
o + �tt

o��1 − �2�h + 2a
nrs

�2w

�y2 �14�
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As the bending stresses at the far sides of the plate are defined by

Mrs = − D� �2w

�y2 + �
�2w

�x2 � �15�

then Eq. �15� can be substituted into Eq. �14� to get the final form.

D� �4w

�x4 + 2
�4w

�x2 � y2 +
�4w

�y4 �
= − �h

�2w

�t2 + nx

�2w

�x2 + Pz

+
2a

3��bt
o

6
+ �bb

o ��3 + ���1 − ��h + 2a

D� �4w

�y4 + �
�4w

�y2 � x2�

−
2a

�6�tb
o + �tt

o��1 − �2�h + 2a
nrs

�2w

�y2 �16�

4 General Solution for a Vibrating Cracked Plate
Now we consider the rectangular plate in Fig. 2 of length l1 in

the x-direction and l2 in the y-direction containing a crack, which
consists of a continuous line of length 2a located at the center and

parallel to the x-direction of the plate. A point load P̄z based on
the application of the appropriate delta function �in Eq. �24�� is
introduced at the location of �xo ,yo�.

Leissa �9� studied a wide range of rectangular plates with dif-
ferent boundary conditions, producing seminal data on natural fre-
quencies and mode shapes. Many approaches have been adopted
from time to time to form the general solution for vibrating plate.
Yagiz and Sakman �12� observed the dynamic response of a
bridge modeled as an isotropic plate under the effect of a moving
load with all sides simply supported. They considered a vehicle in
the form of a seven degree of freedom system as the moving load.
A mathematical model was obtained by the use of Lagrange’s
formulation and was used to investigate the dynamic response of
the bridge and vehicle. Au and Wang �13� studied the dynamic
responses in terms of sound radiation from forced vibration of an
orthotropic plate with the effects of moving mass, damping coef-
ficient, and boundary conditions. Fan �14� analyzed the transient
vibration and the sound radiation of a rectangular plate with vis-
coelastic boundary supports subjected to impact loading and ob-
tained the sound radiation pressure in the time and frequency do-
main by the Rayleigh integral. Mukhopadhyay �15� presented a
numerical method for the solution of rectangular plates having
different edge conditions and loadings. Young �16� investigated

and calculated the set of functions, which define the normal
modes of vibration of a uniform beam and obtained the solution
for the plate problem with different boundary conditions by the
use of Ritz method. Stanišić �17� and Nagaraja and Rao �18�
obtained an approximate solution to find the dynamical behavior
of rectangular plates for different boundary conditions.

The solution for the governing differential equation of the plate
subjected to transverse loading is obtained by defining the char-
acteristic functions depending on the boundary conditions of the
plate. The basic model for the solution is the one in which all
edges are simply supported, while for other boundary conditions
the principle of superposition holds �11,19�. The most general
form of the transverse deflection of the plate is

w�x,y,t� = 	n=1

	 	m=1

	
AmnXmYn
mn�t� �17�

where Xm and Yn are the characteristic or modal functions of the
cracked rectangular plate, Amn is an, as yet, arbitrary amplitude,
and 
mn�t� is the time dependent modal coordinate.

The appropriate expressions for the characteristic or modal
functions are given below and satisfy the stated boundary condi-
tions of the plate. For all cases, l1 and l2 are the lengths of the
sides of the plate along the x and y directions, respectively. Three
boundary condition cases are given next.

Boundary condition 1. Two adjacent edges are clamped while
the other two edges are free—CCFF �9,16,18,19�.

Xm = cos��mx

l1
� − cosh��mx

l1
� − �m
sin��mx

l1
� − sinh��mx

l1
��
�18�

Yn = cos��ny

l2
� − cosh��ny

l2
� − �n
sin��ny

l2
� − sinh��ny

l2
��

�19�

The �m,n and the �m,n are mode shape constants and can be found
in standard reference text such as Refs. �9,19�.

Boundary condition 2. Two adjacent edges are clamped while
the other two edges are freely supported—CCSS �20�.

Xm = 	m=1

	
sin

m�x

l1
sin

m�x

2l1
=

1

2	m=1

	 �cos
m�x

2l1
− cos

3m�x

2l1
�

�20�

Yn = 	n=1

	
sin

n�y

l2
sin

n�y

2l2
=

1

2	n=1

	 �cos
n�y

2l2
− cos

3n�y

2l2
�
�21�

Boundary condition 3. All sides are simply supported—SSSS
�9,10,12�.

Xm = 	m=1

	
sin�m�x

l1
� �22�

Yn = 	n=1

	
sin�n�y

l2
� �23�

The lateral load P̄z at position �xo,yo� can be readily expressed as
follows �14�:

P̄z = Po�t��x − xo��y − yo� �24�

Substituting the definition of w�x ,y , t� from Eq. �17� and P̄z from
Eq. �24� into Eq. �16�, we get

Fig. 2 Isotropic plate loaded by concentrated force and small
crack of length 2a at the center and parallel to the x-axis
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D� �4Xm

�x4 Yn + 2
�4XmYn

�x2 � y2 +
�4Yn

�y4 Xm�Amn
�t�

= − �h
�2
�t�

�t2 AmnXmYn + nx

�2Xm

�x2 YnAmn
�t�

−
2a

�6�tb
o + �tt

o��1 − �2�h + 2a
nrs

�2Yn

�y2 XmAmn
�t�

+
2a

3��bt
o

6
+ �bb

o ��3 + ���1 − ��h + 2a

�D� �4Yn

�y4 Xm + �
�4XmYn

�y2 � x2�Amn
�t�

+ Po�t��x − x0��y − yo� �25�
Berger �21� determined the deflection of a plate by neglecting

the strain energy due to the second invariant of the middle surface
strains and when the deflection is of the order of magnitude of the
thickness of the plate. This can be used to obtain forms for the
in-plane forces nx and nrs per unit length in the x and y direction,
respectively, and to apply theory predominantly based on aspect
ratios equal to 1, 1.5, 2, and infinity. Berger showed that this
approach works well for combinations of simply supported and
clamped boundary conditions, as shown previously. We note, in
passing, that Wah �22� and Ramachandran and Reddy �23� also
applied Berger’s formulation efficiently for analyzing the nonlin-
ear vibrations of undamped rectangular plates.

To make the form of the in-plane forces, the middle surface
strains in the x and y directions can be given by �11�

�x =
�u

�x
+

1

2
� �w

�x
�2

�26�

�y =
�v
�y

+
1

2
� �w

�y
�2

�27�

where u and v are the displacements in the x and y directions,
respectively.

Accordingly, we can write the in-plane forces as �11�

nx =
Eh

1 − �2 ��x + ��y� �28�

nrs =
Eh

1 − �2 ��y + ��x� �29�

Substituting Eqs. �26� and �27� into Eqs. �28� and �29�, we get

nxh
2

12D
=

�u

�x
+ �

�v
�y

+
1

2
� �w

�x
�2

+
1

2
�� �w

�y
�2

�30�

and therefore for y

nrsh
2

12D
=

�v
�y

+ �
�u

�x
+

1

2
� �w

�y
�2

+
1

2
�� �w

�x
�2

�31�

We multiply Eqs. �30� and �31� by dxdy and integrate over the
plate area and then impose the conditions that u and v vanish at
the external boundaries and around the crack due to symmetry,
leading to

nxh
2l1l2

12D
=

1

2�
0

l1�
0

l2 
� �w

�x
�2

+ �� �w

�y
�2�dxdy �32�

and

nrsh
2l1l2

12D
=

1

2�
0

l1�
0

l2 
� �w

�y
�2

+ �� �w

�x
�2�dxdy �33�

Applying the definition of w�x ,y , t� from Eq. �17�, we get

nx = DF1mnAmn
2 
mn

2 �t� �34�

where

F1mn =
6

h2l1l2
	n=1

	 	m=1

	 �
0

l1�
0

l2 
� �Xm

�x
�2

Yn
2

+ �� �Yn

�y
�2

Xm
2 �dxdy �35�

and

nrs = DF2mnAmn
2 
mn

2 �t� �36�

where

F2mn =
6

h2l1l2
	n=1

	 	m=1

	 �
0

l1�
0

l2 
� �Yn

�y
�2

Xm
2

+ �� �Xm

�x
�2

Yn
2�dxdy �37�

Substituting the in-plane forces nx and nrs from Eqs. �34� and �36�
into Eq. �25�, multiplying each part of Eq. �25� by the modal
function Xm and Yn for one of the three example boundary condi-
tions mentioned above, and then integrating over the plate area,
we find that

Mmn
̈�t� + Kmn
�t� + Gmn
3�t� = Pmn �38�

where

Mmn =
�h

D 	n=1

	 	m=1

	
Amn�

0

l1�
0

l2

Xm
2 Yn

2dxdy �39�

Kmn = 	n=1

	 	m=1

	
Amn�

0

l1�
0

l2

�Xm
ivYn + 2Xm� Yn� + Yn

ivXm

−
2a��Xm� Yn� + Yn

ivXm�

3��bt
o

6
+ �bb

o ��3 + ���1 − ��h + 2aXmYndxdy �40�

Gmn = 	n=1

	 	m=1

	
Amn

3 �
0

l1�
0

l2 �− F1mnXmXm� Yn
2

+
2aF2mnXm

2 YnYn�

�6�tb
o + �tt

o��1 − �2�h + 2a
�dxdy �41�

The integral of the delta function is given by �−	
	 Xm�x��x

−x0�dx=Xm�xo�. Therefore, the force term in Eq. �38� can be ex-
pressed as

Pmn =
Po�t�

D
Qmn �42�

where

Qmn = Xm�x0�Yn�y0� �43�

Equation �38� is in the form of the well-known Duffing equation
containing a cubic nonlinear term and can be restated as


̈�t� + �mn
2 
�t� + �mn
3�t� =

�mn

D
Po�t� �44�

where
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�mn
2 =

Kmn

Mmn
�45�

�mn =
Gmn

Mmn
�46�

�mn =
Qmn

Mmn
�47�

and �mn is the natural frequency of the cracked rectangular plate.
Now if it is assumed that the system is under the influence of

weak classical linear viscous damping �, then the equation of the
model of the rectangular cracked plate becomes


̈�t� + 2�
̇�t� + �mn
2 
�t� + �mn
3�t� =

�mn

D
Po�t� �48�

Letting the load be harmonic, such that

Po�t� = p cos �mnt �49�
which leads to


̈�t� + 2�
̇�t� + �mn
2 
�t� + �mn
3�t� =

�mn

D
p cos �mnt �50�

Instead of using the excitation frequency �mn as a parameter, we
introduce a detuning parameter �mn, which quantitatively de-
scribes the nearness of �mn to �mn, and this is a case of primary
resonance. This has the advantage of clarifying the identification
of the terms in the governing equation at first order perturbation
that lead to secular terms. Accordingly we write �24�

�mn = �mn + ��mn �51�

where � is an arbitrarily small perturbation parameter.
To obtain a uniformly valid approximate solution to this prob-

lem, it is necessary to order the cubic term, the damping, and the
excitation. To accomplish this, we choose to set the following to
O���1.

� = ��, �mn = ��mn, p = �p �52�
After substituting Eqs. �51� and �52� into Eq. �50�, it becomes as
follows:


̈�t� + 2��
̇�t� + �mn
2 
�t� + ��mn
3�t� = �

�mn

D
p cos��mn + ��mn�t

�53�
This introduces damping, the cubic nonlinearity, and the excita-
tion to first order perturbation, which is considered to be in line
with the appropriate experimental configuration and other works
on weakly nonlinear vibrating systems �24–27�. It is important to
note here that for Duffing equations the coefficient of the cubic
term, in this case ��mn, can be numerically positive or negative,
leading to overhangs of the response curve in the frequency do-
main to the right or left, respectively.

5 The Method of Multiple Scales
The method of multiple scales is well discussed in the seminal

work of Nayfeh and Mook �24� and also in the well known books
of Kevorkian and Cole �25� and Murdock �26�. Cartmell et al.
�27� reviewed the multiple scales method as applied to weakly
nonlinear dynamics of mechanical systems. For the method of
multiple scales, the solution of the equation is approximated by a
uniformly valid expansion of the form


mn�t,�� = 
o mn�To,T1� + �
1 mn�To,T1� + o��2� �54�

where 
o mn�To ,T1� and 
1 mn�To ,T1� are functions yet to be de-
termined. Independent time scales are introduced where To is
nominally considered as fast time and T1 as slow time, such that,

To= t and T1=�t. We can express the excitation in term of To and
T1 as

Po�t� = �p cos��mnTo + �mnT1� �55�

Substituting the expansion of Eq. �54� and the excitation term
from Eq. �55� into Eq. �53�, we get

�Do
2 + 2�DoD1 + �2D1

2�
o mn + ��Do
2 + 2�DoD1 + �2D1

2�
1 mn

+ o��2� + 2���Do + �D1�
o mn + 2�2��Do + �D1�
1 mn

+ 2�� o��2� + �mn
2 
o mn + ��mn

2 
1 mn + �mn
2 o��2�

+ ��mn�
o mn
3 + �
1 mn

3 + o��2�� = �
�mn

D
p cos��mnTo + �mnT1�

�56�

Separating terms of like order � yields, to order �o:

Do
2
o mn + �mn

2 
o mn = 0 �57�

and to order �1:

Do
2
1 mn + �mn

2 
1 mn = − 2DoD1
o mn − 2�Do
o mn − �mn
o mn
3

+
�mn

D
p cos��mnTo + �mnT1� �58�

The higher orders of �2, �3, and so on may be neglected because
higher order perturbation equations will yield negligible correc-
tions for the problem, as set up here. The general solution of Eq.
�57� can be written as


o mn = B�T1�ei�mnTo + B̄�T1�e−i�mnTo �59�

where B is an unknown complex amplitude, and B̄ is the complex
conjugate of B. This amplitude will be determined by eliminating
the secular terms from 
1 mn. Substituting the solution from Eq.
�59� into Eq. �58�, we get

Do
2
1 mn + �mn

2 
1 mn = − 2DoD1�B�T1�ei�mnTo + B̄�T1�e−i�mnTo�

− 2�Do�B�T1�ei�mnTo + B̄�T1�e−i�mnTo�

− �mn�B�T1�ei�mnTo + B̄�T1�e−i�mnTo�3

+
�mn

D
p cos��mnTo + �mnT1� �60�

which, after dropping the argument T1 in the complex amplitudes
leads to the following:

Do
2
1 mn + �mn

2 
1 mn = − 2iD1��mnBei�mnTo − �mnB̄e−i�mnTo�

− 2i���mnBei�mnTo − �mnĀe−i�mnTo�

− �mn�B3e3i�mnTo + B̄3e−3i�mnTo

+ 3BB̄�Bei�mnTo + B̄e−i�mnTo��

+
�mn

D
p cos��mnTo + �mnT1� �61�

Expressing cos��mnTo+�mnT1� in complex form, we get

Do
2
1 mn + �mn

2 
1 mn = 
− 2i�mnD1B − 2i��mnB − 3�mnB2B̄

+
�mn

2D
pei�mnT1�ei�mnTo − �mnB3e3i�mnTo + cc

�62�

where cc denotes the complex conjugate of the preceding terms.
Any particular solution of Eq. �62� can have secular terms con-
taining the factor Toei�mnTo unless D1B=0. To eliminate the secu-
lar terms from Eq. �62�, we must put
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− 2i�mnD1B − 2i��mnB − 3�mnB2B̄ +
�mn

2D
pei�mnT1 = 0 �63�

In solving Eq. �63�, it is convenient to write the complex ampli-
tude B in the polar form

B =
1

2
bei� �64�

where b and � are real amplitude and phase functions of T1,
respectively. Substituting Eq. �64� into Eq. �63�, we get

�mnb�� − i�mnb� − i�mn�b −
3�mn

8
b3 +

�mn

2D
p�cos��mnT1 − ��

+ i sin��mnT1 − ��� = 0 �65�

where the prime denotes the derivative with respect to T1. Now,
separating the result into real and imaginary parts, we obtain

b� = − �b +
�mn

2�mnD
p sin��mnT1 − �� �66�

b�� =
3�mnb3

8�mn
−

�mn

2�mnD
p cos��mnT1 − �� �67�

Equations �66� and �67� can be transformed into an autonomous
system, i.e., one in which T1 does not appear explicitly, by letting

� = �mnT1 − � �68�
Substituting Eq. �68� into Eqs. �66� and �67�, we get

b� = − �b +
�mn

2�mnD
p sin � �69�

b�� = �mnb −
3�mnb3

8�mn
+

�mn

2�mnD
p cos � �70�

In the case of steady-state motion b�=���0—and this corre-
sponds to the singular points of Eqs. �69� and �70�—that is,

�b =
�mn

2�mnD
p sin � �71�

−
3�mnb3

8�mn
+ �mnb = −

�mn

2�mnD
p cos � �72�

Squaring and adding these equations, we obtain,


�2 + ��mn −
3�mnb2

8�mn
�2�b2 =

�mn
2

4�mn
2 D2 p2 �73�

It is then possible to rearrange Eq. �73� to give the amplitude of
the response b as a function of the detuning parameter �mn and the
amplitude of the excitation po, and this is the frequency-response
equation, as follows:

�mn =
3�mnb2

8�mn
�� �mn

2

4�mn
2 b2D2 p2 − �2 �74�

6 Numerical Results and Discussion
In this section, the results are presented as functions of fre-

quency, half-crack length, and plate thickness. Figure 3 shows the
plot of amplitude b as a function of �mn for a given � and p in the
form of a frequency-response curve. Each point on this curve
corresponds to a singular point. To draw such a curve, one solves
for �mn in terms of b. The material properties of aluminum have
been considered for different cases of half-crack length, i.e., E
=7.03�1010 N /m2, �=2660 kg /m3, �=0.33, and damping fac-
tor �=0.08, while the geometric values of the plate are l1
=0.5 m, l2=1 m, h=0.01 m, and p=10 N is the load acting on
the surface of the plate at different points. The effect of changing
the position of the load is shown in Fig. 3. The natural frequencies
without and with the crack for different boundary conditions and
aspect ratios are tabulated in Table 1.

It may be seen from Table 1 that the presence of the crack
�shown here as a deliberately large� at the center of the plate
significantly influences the natural frequency of the first mode of
the plate, in all three cases. In the subsequent section, attention
will be focused on the case for which two adjacent edges are
clamped while the other two edges are free �CCFF�, and the re-
sults are shown for the first mode only. Although it cannot be
easily shown in Fig. 3 due to the necessary scaling of the plot,
increasing the half-crack length from 0.05 m to 0.125 m intro-
duces small changes to the degree of nonlinear overhang in the
softening direction, with some attendant change in the modal
natural frequency. It has also been observed that changing the
location of the load on the plate slightly affects the global nonlin-
earity of the system, as shown in Fig. 3 and evidenced by the
increasingly wide nonlinear region as the excitation location
moves closer to the unsupported corner.

Figure 4 shows the decrease in the natural frequency as we go
on to increase the half-crack length for the same parameters, as
considered earlier. These changes are very small for small half-

Fig. 3 The amplitude of the response as a function of the de-
tuning parameter „rad/s… and the point load at different loca-
tions „m… of the plate element

Table 1 Natural frequencies of cracked plate model for different boundary conditions and aspect ratios

Lengths of the sides of the plate

Two adjacent edges clamped,
the other two free

�CCFF�

Two adjacent edges clamped,
the other two simply supported

�CCSS�
All edges simply supported

�SSSS�

l1 �m� l2 �m�

First mode natural frequency, �mn �rad/s� for a half-crack length, a=0.05 �m�

Uncracked Cracked Uncracked Cracked Uncracked Cracked

1 1 80.462 70.559 445.666 403.779 77.580 71.119
0.5 1 231.061 227.611 1161.770 1138.530 193.951 189.581
0.5 0.5 321.849 282.237 1782.660 1615.120 310.322 284.475
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crack lengths, as one would expect. Moreover, the natural fre-
quency is also influenced if the geometry of the plate is changed,
in particular, its length and thickness, in addition to the effect of
the half-crack length. Similarly, it may be seen from Fig. 5 that by
increasing the thickness of the plate the natural frequency of the
first mode also increases for different values of half-crack length.
This means that this natural frequency is directly related to the
thickness of the plate. The theory presented in this paper currently
holds only for a plate with a crack at the center and defined by a
continuous line model. The results of this sort could equally be
obtained for the cases of CCSS and SSSS, but space limitations
currently preclude that.

It is also instructive to note that if the cubic nonlinearity �mn is
set to zero, then the problem is linearized. However. in the case of
the nonlinear problem the significant effect of including this term
is apparent from the numerical results depicted in Fig. 6. It can be
seen in Fig. 6 that the ratio of the nonlinear solution amplitude
�where �mn is set to zero� is very large for negative detuning. This
exactly emulates the softening nonlinear characteristic shown in
Fig. 4. It can be seen that this ratio reduces close to unity for zero
and positive detuning, again fully in line with the softening char-
acteristic observable in Fig. 3. In the figure, bNL is the nonlinear
amplitude and bL is the corresponding linear amplitude.

Orientation of the crack at some angle will change the model
because there will be more than two components of the crack
geometry: one for tensile loading and one for bending along the
plate element. Here, it is assumed that the crack is parallel to the
x-direction of the plate.

7 Conclusions
This research presents a new analytical model for the vibration

analysis of cracked plates subjected to transverse loading at some
specified position with different sets of boundary conditions.
Berger’s formulation is effectively applied to make the governing
equation for vibration of a cracked plate nonlinear and in the form
of a Duffing equation. It has been found that for a square plate
with the CCFF boundary conditions there is an approximately
12% reduction in natural frequency in the presence of a large
centrally located crack of length 0.1 m. However, the reduction in
the value of natural frequency is lower for other plate aspect ra-
tios, and linear and nonlinear results tend to coalesce for very low
amplitude ratios.

Finally, it is concluded that the decrease in the natural fre-
quency when there is a crack present may substantiate the use of
the model in constructing a vibration based analysis methodology
for plate structures and for further development of vibration based
health monitoring. Further work is under way to extend the theory
of this paper to cracks in arbitrary locations and orientations.
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Slip Effects on the Peristaltic
Flow of a Third Grade Fluid in a
Circular Cylindrical Tube
Peristaltic flow of a third grade fluid in a circular cylindrical tube is undertaken when the
no-slip condition at the tube wall is no longer valid. The governing nonlinear equation
together with nonlinear boundary conditions is solved analytically by means of the per-
turbation method for small values of the non-Newtonian parameter, the Debroah number.
A numerical solution is also obtained for which no restriction is imposed on the non-
Newtonian parameter involved in the governing equation and the boundary conditions. A
comparison of the series solution and the numerical solution is presented. Furthermore,
the effects of slip and non-Newtonian parameters on the axial velocity and stream func-
tion are discussed in detail. The salient features of pumping and trapping are discussed
with particular focus on the effects of slip and non-Newtonian parameters. It is observed
that an increase in the slip parameter decreases the peristaltic pumping rate for a given
pressure rise. On the contrary, the peristaltic pumping rate increases with an increase in
the slip parameter for a given pressure drop (copumping). The size of the trapped bolus
decreases and finally vanishes for large values of the slip parameter.
�DOI: 10.1115/1.2998761�

Keywords: slip condition, peristaltic flow, third grade fluid, trapping

1 Introduction
In recent years, there has been a growing interest in peristaltic

transport. This is perhaps due to the fact that fluid transport
through tube by peristaltic motion as a fundamental physiological
process has key importance in biomechanical and engineering sci-
ences. To be more specific it encounters in urine transport from
the kidney to the bladder, chyme transport in the gastrointestinal
tract, the movement of spermatozoa in the ductus efferents of the
male reproductive tract, the movement of the ovum in the fallo-
pian tube, and the vasomotion of small blood vessels. Roller and
finger pumps also operate under this principle. Although peristal-
tic motion has been found in living systems for many centuries,
the mathematical modeling on the topic began with pioneering
works by Shapiro et al. �1� using a wave frame of reference and
Fung and Yih �2� employing a laboratory frame of reference. Later
several investigations were carried out using these frames, which
classify them according to the geometries, wave shapes, fluids,
and assumptions of the Reynolds number, wavelength parameter,
and wave amplitude parameter.

Literature survey indicates that most of the contributions on
peristaltic motion deal with the blood and other physiological flu-
ids as Newtonian fluids. This approach is satisfactory for peristal-
sis in the ureter but it is not adequate when the peristaltic mecha-
nism involved in small blood vessels, lymphatic vessels, intestine,
ductus afferents of the male reproductive tract, and transport of
spermatozoa in the cervical canal is considered. It is now readily
acknowledged that majority of the physiological fluids behave like
a non-Newtonian fluid. Some recent investigations, which were
contributed to the study of peristaltic action, were mentioned in
the references �3–17�.

Although the no-slip condition is known as the central tents of
the Navier–Stokes theory, there are problems where it does not

hold. Such problems are then described by defining a partial slip
between the fluid and boundary, e.g., the fluid may be particulate
or it could be a rarefied gas with a suitable Knudsen number
value. Beavers and Joseph �18� proposed the slip condition in
terms of the tangential components of the velocity and the stress
at the boundary. The slip condition is important in the polishing of
artificial heart valves and internal cavities in a variety of manu-
factured parts, microchannels, or nanochannels and in applications
where a thin film of light oil is attached to the moving plates or
when the surface is coated with a special coating such as a thick
monolayer of hydrophobic octadecyltrichlorosilane �19�. There is
always a certain amount of slip, which is very hard to detect
experimentally because of the required space resolution. Kwang-
Hua Chu and Fang �20� analyzed the peristalsis in a slip flow in a
two dimensional channel with small amplitude sinusoidal waves.
The compressible viscous flow in slits with the wall slip is dis-
cussed by Georgiou and Crochet �21�. In view of modeling the
oscillations observed in constant piston speed rheometers and
other extruding devices, they also performed computations for the
viscous flow of a compressible fluid in a channel with slip at the
wall. The effects of slip on the flow of a viscous fluid in a channel
were investigated by Rao and Rajagopal �22�. They used the slip
condition in terms of both the shear and normal stresses. Kwang-
Hua Chu�23� and Chu �24� analyzed the slip effects within static,
rigid, and corrugated-wall microchannels or microtubes, which
are common in micro-electro-mechanical system �MEMS� appli-
cations. Moreover it is interesting and realistic to note that micro-
domains, such as arteries and capillaries, are prone to constric-
tions for various pathological reasons. Such microdomain flow
problems may be studied as flows through axially corrugated
pipes using the continuum theory, with the slip condition pre-
scribed on the pipe surface. Very recently, El-Shehawy et al. �25�
examined the slip effects on the peristaltic mechanism of a Max-
well fluid. Despite the overwhelming importance and frequent oc-
currence of the complex rheology of biological fluids, no work
has been reported yet regarding the slip effects on the peristaltic
flows of third grade fluids. In the present work we put forward the
peristaltic flow analysis of the third grade fluid in the presence of
a slip condition. The slip condition is taken in terms of the shear
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stress. Peristaltic flow in a circular cylindrical tube is studied un-
der long wavelength and small Deborah number considerations.
This paper runs as follows. In Sec. 2 we present the basic equa-
tions. Problem formulation is given in Sec. 3. Section 4 includes
the series solution. The numerical method used here is presented
in Sec. 5. Section 6 highlights the influence of various interesting
parameters on the flow. Comparison of the series and numerical
solutions is also made in the same section. Section 7 provides the
concluding remarks.

2 Field Equations
In the absence of body forces, the balances of mass and linear

momentum lead to

div V = 0 �1�

�
dV

dt̄
= div T �2�

where � is the density, V is the velocity vector, p̄ is the pressure,
T is the Cauchy stress tensor, and d /dt denotes the material time
derivative. The constitutive relation for the stress tensor of an
incompressible third grade homogenous fluid, as proposed by Fos-
dick and Rajagopal �26�, has the form

T = − pI + S �3�

S = �A1 + �1A2�2A1
2 + ��trA1

2�A1 �4�

Here, −pI is the indeterminate part of the stress due to the con-
straint of incompressibility, � is the coefficient of shear viscosity,
and �1, �2, and � are the material constants. The Rivlin–Ericksen
tensors An are defined by

A1 = �grad V� + �grad V�T

An =
dAn−1

dt̄
+ An−1�grad V� + �grad V�TAn−1, n � 1 �5�

The Clausius–Duhem inequality and the requirement that the
Helmholtz free energy be a minimum in equilibrium impose the
following constraints on the dynamic viscosity �, the normal
stress coefficients �1 and �2, and the coefficient �

� � 0, �1 � 0, � � 0, ��1 + �2� � �24�� �6�

It is noted that this constitutive relation is able to predict not only
the normal stress differences, but also the shear thickening phe-
nomenon �since ��0�, which indicates the increase in the viscos-
ity by the increasing shear rate.

3 Mathematical Model
Let us consider a circular cylindrical tube of radius a filled with

a homogenous incompressible third grade fluid. The flow is in-
duced by an infinite wave train traveling with velocity c along the
walls of the tube. We choose a cylindrical coordinate system with

R̄ along the radial direction and Z̄ along the axis of the tube. The
geometry of the wall surface is

h̄�Z̄, t̄� = a + b cos�2�

	
�Z̄ − ct̄�� �7�

in which a is the radius of the undisturbed tube, b is the wave
amplitude, 	 is the wavelength, c is the wave speed, and t̄ is the
time.

In the fixed frame of reference the flow phenomenon is un-
steady. To carry out the steady analysis we change the coordinate
system from the fixed frame to a wave frame. The two frames are
related through the following transformations:

r̄ = R̄, z̄ = Z̄ − ct̄

ū = Ū, w̄ = W̄ − c �8�

where �Ū ,W̄� and �ū , w̄� are the radial and axial velocity compo-
nents in the fixed and wave frames, respectively.

For the subsequent calculations it is convenient to introduce the
following dimensionless quantities:

r =
r̄

a
, z =

2�z̄

	
, u =

ū

c
, w =

w̄

c

h =
h̄

a
, p =

a2p̄

	�c
, S =

aS

�c
, t =

2�c

	
t̄ �9�

Utilizing the relations �8� and �9� and introducing the stream
function 
�r ,z� by

u =
− �

r

�


�z
, w =

1

r

�


�r
�10�

with �=2�a /	, the continuity equation �1� is satisfied identically
and the resulting equation of Eq. �2� under a long wavelength
yields

�p

�r
= 0 �11�

�p

�z
=

1

r

��rSrz�
�r

�12�

where by Eq. �4�

Srz =
�

�r
	1

r

�


�r

 + 2�	 �

�r
	1

r

�


�r


3

�13�

and �=�c2 /�a2 is the Debroah number. It is noted that for the
Newtonian fluid �=0 and for all nonzero positive values of �, the
viscosity increases by increasing the shear rate.

The appropriate boundary conditions in the fixed frame are

�W̄

�R̄
= 0 at R̄ = 0

Ū = 0 and W̄ = −


�
S̄R̄Z̄ at R̄ = h̄ �14�

Upon making use of Eq. �8� into the above equation and then
using the variables defined in Eq. �9� one can write

�w

�r
= 0 at r = 0

u = 0 and w = − 1 − �Srz at r = h = 1 + � cos z �15�
where

Srz =
�w

�r
+ 2�	 �w

�r

3

�16�

and � �= /a, is the dimensional slip parameter� is the dimension-
less slip parameter. Furthermore we note that �=0 yields the no-
slip case and �→� corresponds to the free-slip condition.

The instantaneous volume rate of flow in the fixed R̄ and Z̄
coordinate system is given as

Q̄ = 2��
0

h̄

W̄R̄dR̄ �17�

where h̄ is a function of Z̄ and t̄. By substituting Eq. �8� into Eq.
�17�, and then integrating, one obtains

Q̄ = q̄ + �ch̄2

where
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q̄ = 2��
0

h̄

w̄r̄dr̄ �18�

is the volume flow rate in the moving coordinate system and is

independent of time. Here h̄ is a function of z̄ alone and is defined
through Eq. �8�. Using dimensionless variables, we find

F =
q̄

2�a2c
=�

0

h
�


�r
dr = 
�h� − 
�0� �19�

From Eqs. �10�, �15�, �16�, and �19� we can write


 = 0,
�

�r
	1

r

�


�r

 = 0 at r = 0


 = F,
1

r

�


�r
= − �Srz − 1 at r = h = 1 + � cos z �20�

where �=b /a is the amplitude ratio.
Elimination of pressure from Eqs. �11� and �12� leads to the

following compatibility equation:

�

�r
�1

r

��rSrz�
�r

� = 0 �21�

The dimensionless mean flow rates � in the fixed frame and F
in the wave frame are related through the following expression:

� = F +
1

2
	1 +

�2

2

 �22�

4 Series Solution
Here we attempt to find the approximate solution to the

boundary-value problem consisting of Eqs. �20� and �21� by em-
ploying the perturbation method for small Debroah numbers. For
this purpose we expand the flow quantities in powers of the De-
broah number � as follows:


 = 
0 + �
1 + ¯

p = p0 + �p1 + ¯

F = F0 + �F1 + ¯ �23�

Invoking above equations into Eqs. �12�, �20�, and �21� and then
equating the coefficients of like powers of � on both sides we
have the following systems.

For the system of order zero,

�

�r
�1

r

�

�r
�r

�

�r
	1

r

�
0

�r

� = 0

−
dp0

dz
+

1

r

�

�r
�r

�

�r
	1

r

�
0

�r

 = 0 �24�


0 = 0,
�

�r
	1

r

�
0

�r

 = 0 at r = 0


 = F0,
1

r

�
0

�r
= − �

�

�r
	1

r

�
0

�r

 − 1 at r = h �25�

For the system of order one,

�

�r
�1

r

�

�r
�r	 �

�r
	1

r

�
1

�r

 + 2	 �

�r
	1

r

�
0

�r


3
� = 0

−
dp1

dz
+

1

r

�

�r
�r	 �

�r
	1

r

�
1

�r

 + 2	 �

�r
	1

r

�
0

�r


3
 = 0 �26�


1 = 0,
�

�r
	1

r

�
1

�r

 = 0 at r = 0


 = F1,
1

r

�
1

�r
= − �� �

�r
	1

r

�
1

�r

 + 2	 �

�r
	1

r

�
0

�r


3

at r = h �27�

4.1 Zeroth-Order Solution. The stream function, axial ve-
locity, and axial pressure gradient at this order are, respectively,
given by


0 =
h2�h2 + 2F0�
2�h2 + 4�h�

�L2 − L4� + F0L2 �28�

w0 = 	 h2 + 2F0

h2 + 4�h

�1 − 2L2� + 2

F0

h2 �29�

dp0

dz
= −

8�h2 + 2F0�
h4 + 4�h3 �30�

where L=r /h. For �=0 the above results correspond to a New-
tonian fluid �1,9,10�.

At this order, the pressure rise per wavelength in dimensionless
form is given as

�P0 =�
0

2�
dp0

dz
dz �31�

4.2 First-Order Solution. Substituting Eq. �28� into Eq. �26�
and solving the resulting equation subject to the boundary condi-
tions �27� we obtain


1 = 	dp0

dz

3r2h4

96
�1 − L4 +

2L2h

4� + h
−

2h

4� + h
�

+ F1L2�−
L2h

4� + h
+

h

4� + h
+ 1� �32�

w1 = 	dp0

dz

3 h4

96
�− 6L4 +

8L2h

4� + h
−

4h

4� + h
+ 2�

+
F1

h2�−
4L2h

4� + h
+

2h

4� + h
+ 2� �33�

dp1

dz
= −

16F1

h3�4� + h�
+ 	dp0

dz

3 h3

3�4� + h�
�34�

The pressure rise over a wavelength is

�P1 =�
0

2�
dp1

dz
dz �35�

The expressions of stream function and axial pressure gradient
up to the first order may be written as


 =
h2�h2 + 2F0�
2�h2 + 4�h�

�L2 − L4� + F0L2 + �		dp0

dz

3r2h4

96

��1 − L4 +
2L2h

4� + h
−

2h

4� + h
�

+ F1L2�−
L2h

4� + h
+

h

4� + h
+ 1�
 �36�

dp

dz
= −

8�h2 + 2F0�
h4 − 4�h3 + �	−

16F1

h3�4� + h�
+ 	dp0

dz

3 h3

3�4� + h�

�37�
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Fig. 1 Plot showing profiles for the stream function �„r… „left panels… and axial velocity w„r… „right
panels… for different values of F and � and �. Solid lines indicate the numerical solution while dotted
lines indicate the perturbation solution of the problem. „a… and „b… correspond to F=−0.2, �=0.1, and �
=0.1; „c… and „d… correspond to F=−0.2, �=0.1, and �=0.2; „e… and „f… correspond to F=−0.2, �=0.01, and
�=0.2; „g… and „h… correspond to F=−1.5, �=0.1, and �=0.2. The other parameters chosen are z=� /2 and
a=0.2.
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Defining F=F0+�F1 the expressions of stream function and
axial pressure gradient can be expressed as


 =
h2�h2 + 2F�
2�h2 + 4�h�

�L2 − L4� + FL2 + �	 r2h4

96
	−

8�h2 + 2F�
h4 + 4�h3 
3

��1 − L4 +
2L2h

4� + h
−

2h

4� + h
�
 �38�

dp

dz
= −

8�h2 + 2F�
h4 + 4�h3 + �	−

8�h2 + 2F�
h4 + 4�h3 
3 h3

3�4� + h�
�39�

5 Numerical Method
In this section we intend to find the direct numerical solution of

the differential equation �21� and the boundary conditions �20� by
means of a suitable numerical technique. Because the differential
equation �21� is nonlinear in 
, we cannot solve this boundary-
value problem by the direct finite-difference method. In solving
such nonlinear equations, iterative methods are commonly used.
We can now construct an iterative procedure in the form

�

�r
�1

r

�

�r
�r	 �

�r
	1

r

�
�n+1�

�r

 + 2�	 �

�r
	1

r

�
�n�

�r


3
� = 0

�40�


�n+1� = 0,
�

�r
	1

r

�
�n+1�

�r

 = 0, at r = 0


�n+1� = F,
1

r

�
�n+1�

�r
= − �� �

�r
	1

r

�
�n+1�

�r



+ 2�	 �

�r
	1

r

�
�n�

�r


3� − 1, at r = h �41�

where the index �n� indicates the iterative step. It is easy to con-
firm that if the indices �n� and �n+1� are withdrawn, Eqs. �40� and
�41� are consistent with the original differential equation �21� and
the boundary conditions �20�. Equation �40� and the boundary
conditions �41� define a linear differential boundary-value prob-
lem for 
�n+1�. By means of the finite-difference method a linear
algebraic system can be deduced and solved for each iterative step
�n+1�. Therefore, a sequence of functions 
�0��r ,z�, 
�1��r ,z�, and

�2��r ,z� , . . . is determined in the following manner: if an initial
estimated 
�0��r ,z� is given, then 
�1��r ,z� and 
�2��r ,z� , . . . are
calculated successively as the solutions of the boundary-value
problem consisting of Eqs. �20� and �21�. Unfortunately, such an
iteration is often divergent, especially when the initial estimated

�0��r ,z� is not given carefully and suitably. Usually, in order to
achieve a better convergence, the so-called method of successive
under-relaxation is used. We solve the boundary-value problem
�40� and �41� for the iterative step �n+1� to obtain an estimated

value of 
�n+1� : 
̃�n+1�, then 
�n+1� is defined by the formula


�n+1� = 
�n� + ��
̃�n+1� − 
�n��, � � �0,1� �42�

where � is an under-relaxation parameter. We should choose a
small � so that convergent iteration is reached. In our simulations
we choose an initial guess of 
�0��r ,z�=
0, i.e., the zeroth order
perturbation solution in Eq. �28�, which fulfills the first, second,
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Fig. 2 Transverse profiles of axial velocity w„r… „left panels… and stream function �„r… „right panels… for
different values of � „�=0.05… „„a… and „b…… and � „�=0.2… „„c… and „d……. The other parameters chosen are
z=−�, F=−0.8, and a=0.2.
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and third boundary conditions in Eq. �41�. Of course, some other
choices are also possible. The iteration should be carried out until
the relative differences of the computed 
�n+1� and 
�n� between
two iterative steps are smaller than a given error chosen to be
10−8.

6 Results and Discussion
This section is divided into four subsections. In Sec. 6.1, we

give the comparison of perturbation and numerical solutions. The
flow characteristics are discussed in the Sec. 6.2. In Sec. 6.3 the
effects of various parameters on the pumping characteristics are
investigated. The trapping phenomenon is illustrated in Sec. 6.4.

6.1 Comparison of Numerical and Perturbation Solutions.
A comparison of the perturbation and numerical solutions is pre-
sented in Fig. 1. It is observed from this figure that a good agree-

ment between both solutions is highly dependent on the param-
eters �, �, and F. Comparison of Figs. 1�a� and 1�b� with Figs.
1�c� and 1�d� shows that with an increase in �, the deviation of the
perturbation solution from the numerical solution increases. As
anticipated for large values of � the perturbation solution is no
longer valid. Even for same values of � the validity of the pertur-
bation solution is also dependent on the values of F and �. With
the decrease in the slip parameter �, the deviation of the pertur-
bation solution from the numerical solution increases, which is
obvious by comparing Figs. 1�c� and 1�d� with Figs. 1�e� and 1�f�.
Similarly by increasing the magnitude of flux F the perturbation
solution diverges from the numerical solution �Figs. 1�e� and 1�f��.
That is because in the perturbation solution, the magnitude of the
neglected high-order terms is dependent on these parameters.
However, when � is small or F is large, the perturbation solution
can be made closer to the numerical solution by suitably choosing
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Fig. 3 Axial distribution of axial pressure gradient dp /dz within a wavelength z« †−� ,�‡ for various
values of � „�=0.1… „left panels… and � „�=0.1… „right panels… for three flow rates F=−0.8„�=−0.29… „„a…
and „b……, F=−0.5„�=0.01… „„c… and „d……, and F=−0.2„�=0.31… „„e… and „f……. The value of � is chosen to be
equal to 0.2.
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the value of �. Test computations show that for F� �−1.5,1.5�
and �� �0,0.5�, an acceptable perturbation solution can be ob-
tained by taking �� �0.0001,0.2�.

6.2 Flow Characteristics. In this subsection the effects of
non-Newtonian and slip parameters on the velocity and stream
functions are discussed. For this purpose only the solutions ob-
tained by the iterative method are illustrated. The results for vari-
ous values of the non-Newtonian and slip parameters on the trans-
verse profiles of the axial velocity and stream function for the
cross section z=−� are presented in Fig. 2 for a fixed value of the
flux F. Note that for z=−� the tube radius, in fact, becomes 0.8.
From Fig. 2�a� we can observe that an increase in the non-
Newtonian parameter � causes an increase in the magnitude of the
velocity at the tube wall and a decrease near the center of the tube,
i.e., with the increase in �, the radial distribution of the axial
velocity becomes much flatter. It means that the transverse profile
of the velocity for a third grade fluid is much flatter than that for
a Newtonian fluid. This effect indicates that for large values of �
the shear thickening effects of the third grade fluid are pronounced
and the velocity profile tends to linear over a fixed cross section.
The effects of varying slip parameters � on the velocity profile
can be seen in Fig. 2�c�. By increasing the slip parameter � the
velocity increases near the wall of the tube and decreases near the
center of the channel; the velocity distribution becomes flatter. It
is also interesting to note that for large values of the slip param-
eter the flow velocity is almost uniform across the cross section.
For this case, the flow caused by the peristaltic wall is negligibly
small due to the near free-slip condition and the flow is driven
mainly by the pressure gradient. To get an impression on the dis-
tribution of the stream function the corresponding profiles of the
stream function are displayed in Figs. 2�b� and 2�d�.

6.3 Pumping Characteristics. The variations of the axial
pressure gradient dp /dz over one wavelength for different values
of � and � with three different flux rates F are shown in Fig. 3. It
is revealed that for F=−0.8��=−0.29� in Figs. 3�a� and 3�b�,
dp /dz is positive over the whole wavelength, i.e., the pressure
gradient is a resistance to the flow driven by the peristalsis. For
�=0.01 Figs. 3�c� and 3�d�, dp /dz resists the flow in the narrow
part of the tube �near z= ��� while it assists the flow in the wider
part �near z=0�. Furthermore, it is observed that for larger values
of the mean flow rate �=0.31 �Figs. 3�e� and 3�f��, dp /dz is
negative over the whole wavelength, i.e., it assists the flow in both
the wide and narrow parts of the tube. From Figs. 3�a�, 3�c�, and
3�e� it is noted that with the increase in �, the pressure gradient
increases. This is due to an increase in the fluid viscosity. From
Figs. 3�b�, 3�d�, and 3�f� we note that an increase in the slip
parameter decreases the magnitude of dp /dz for all three values of
the mean flow rate �. The reason is that increasing the slip near
the walls will decrease the wall resistance to the flow, hence a
smaller pressure gradient is needed to maintain a given flux rate.

A characteristic feature of peristalsis is pumping against the
pressure rise. To discuss this feature we have plotted the pressure
rise per wavelength �p with respect to the mean flow rate � for
different values of � �Fig. 4�a�� and � �Fig. 4�b�� in Fig. 4. The
maximum pressure rise against, which the peristalsis works as a
pump, i.e., �p for �=0, is denoted by P0. When �p� P0, then
the flux is negative, i.e., against the peristaltic direction. The value
of � corresponding to �p=0 �which is known as free pumping� is
denoted by �0. When �p�0, the pressure assists the flow and
this is known as copumping. Figure 4�a� indicates that P0 in-
creases by increasing �. This means that peristalsis has to work
against a greater pressure rise for the third grade fluid when com-
pared with the Newtonian fluid. For a fixed �p�0, the peristaltic
pumping rate increases for the third grade fluid in comparison
with the Newtonian fluid. Furthermore, in the case of free pump-
ing there is no obvious difference between the Newtonian and the
third grade fluids. However, in the case of copumping ��p�0� a

larger pressure propulsion is needed to maintain a given flux rate
for a third grade fluid when compared with the Newtonian fluid.
From Fig. 4�b� we observe that P0 decreases by increasing �. This
means that the fluid slippage at the wall reduces the maximum
pressure against which the peristalsis works as a pump. The peri-
staltic pumping rate �for the fixed �p�0� decreases by increasing
�. However, the flow rate in copumping �for the fixed �p�0�
increases by increasing �.

6.4 Trapping. In general the shape of streamlines is similar to
that of the boundary wall in the wave frame. However under
certain conditions some of the streamlines split and enclose a
bolus, which moves as a whole with the wave. This phenomenon
is known as trapping. We note that the trapping phenomenon is
largely dependent on � �27�. For various values of � one may
decide that either the trapping occurs or not. Moreover, one can
easily find such values of � for which trapping occurs near the
boundary, centerline, or nowhere. We have chosen a value of � in
which the fluid near the center is trapped. To discuss the effects of
� and � on the trapping, we have plotted Figs. 5 and 6, respec-
tively. In both figures the streamline with value 
=0 is identified
by a dotted line. The streamlines below or inside this streamline
have positive values. The topmost streamline corresponds to 

=F=−0.2. All the rest of the streamlines correspond to values of
stream function between 0 and −0.2. Figure 5 shows that increas-
ing �, on one hand, increases the size of the bolus, and on the
other hand, also increases the circulation of the bolus. For large
values of �, the change in the bolus size and circulation is almost
no longer visible. The effects of � on trapping can be seen in Fig.
6. It is interesting to note that the trapping exists for only small
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Fig. 4 Pressure rise per wavelength �p versus flow rate � for
various values of � „�=0.05… „a… and � „�=0.05… „b…. Here � is
chosen to be equal to 0.2.
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values of the slip parameter �27�. The size of the trapped bolus
decreases with an increase in � and finally the bolus vanishes for
large values of �.

7 Concluding Remarks
We have analyzed the problem of peristaltic transport of a third

grade fluid in a circular cylindrical tube under the influence of a

slip condition near the tube wall. Both the perturbation and nu-
merical solutions were developed. The validity of the perturbation
analytic solution is explicitly highlighted and a comparison is
made with the numerical solution. It is seen that the perturbation
solution can provide a good approximation for small perturbation
parameters. In this investigation, the flow features, pumping char-
acteristics, and trapping phenomenon are studied for various val-
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Fig. 5 Streamlines for different values of �. „a…–„h… correspond to the values of �
= „0,0.02,0.06,0.1,1,5,10,20…, respectively. The other parameters chosen are �=0.0, �=0.2, and �
=0.31.
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ues of non-Newtonian and slip parameters. From the presented
analysis it is concluded that a third grade fluid peristalsis has to
work against a greater pressure rise as compared with a Newton-
ian fluid. However, the slip at the wall considerably reduces the
pressure rise per wavelength in the pumping region. The size and
circulation of the trapped bolus increase when going from a New-
tonian to a third grade fluid. Furthermore an increase in the slip
parameter reduces the size of trapped bolus, and the bolus may
vanish when the slip at the peristaltic wall is especially large. The
corresponding results in absence of slip can be deduced by choos-
ing �=0. The presented analysis has importance in applications of
the MEMS. Microchannels built in the MEMS, however, are eas-
ily subjected to environment noises, such as oscillations or vibra-
tions and externally excited traveling waves. For flexible walls the

last one normally corresponds to the peristaltic transport �28�. In
bio-MEMS applications the investigators found interesting behav-
ior due to nonlinear coupling between the surface wave and slip
velocity when the Knudsen number Kn in the slip flow regime is
0.001�Kn�0.1.
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Fig. 6 Streamlines for different values of �. „a…–„f… correspond to the values of �= „0,0.02,0.05,0.08,0.1,0.5…, respectively.
The other parameter chosen are �=0.1, �=0.2, and �=0.31.
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Nomenclature
V � velocity vector
T � Cauchy stress tensor
S � extra stress tensor
I � identity tensor

A1 � first Rivilin–Ericksen tensor
An � Rivilin–Ericksen tensors for n�1

� � density
p̄ � dimensional pressure
� � dynamic viscosity

�1 ,�2 ,� � material constants of the third grade fluid
t̄ � dimensional time

R̄ , Z̄ � radial and axial coordinates in fixed frame

Ū ,W̄ � radial and axial velocities in fixed frame

h̄ � radius of the tube in fixed frame
a � radius of the undisturbed tube
	 � wavelength of the wave
c � speed of the wave
b � amplitude of the wave

r̄ , z̄ � radial and axial coordinates in wave frame
ū , w̄ � radial and axial velocities in wave frame
r ,z � dimensionless radial and axial coordinates in

wave frame
u ,w � dimensionless radial and axial velocities in

wave frame

 � dimensionless stream function
p � dimensionless pressure
S � dimensionless extra stress tensor
t � dimensionless time
h � dimensionless radius of the tube in wave frame
� � Debroah number
 � dimensional slip parameter
� � dimensionless slip parameter
� � amplitude ratio
� � wave number

Q̄ � dimensional volume flow rate in fixed frame
q̄ � dimensional volume flow rate in wave frame

� � dimensionless mean flow rate in fixed frame
F � dimensionless mean flow rate in wave frame

dp /dz � axial pressure gradient
�P � pressure rise per wavelength

� � under-relaxation parameter
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Comparisons of Probabilistic and
Two Nonprobabilistic Methods for
Uncertain Imperfection Sensitivity
of a Column on a Nonlinear
Mixed Quadratic-Cubic
Foundation
Two nonprobabilistic set-theoretical treatments of the initial imperfection sensitive
structure—a finite column on a nonlinear mixed quadratic-cubic elastic foundation—are
presented. The minimum buckling load is determined as a function of the parameters,
which describe the range of possible initial imperfection profiles of the column. The two
set-theoretical models are “interval analysis” and “convex modeling.” The first model
represents the range of variation of the most significant N Fourier coefficients by a
hypercuboid set. In the second model, the uncertainty in the initial imperfection profile is
expressed by an ellipsoidal set in N-dimensional Euclidean space. The minimum buckling
load is then evaluated in both the hypercuboid and the ellipsoid. A comparison between
these methods and the probabilistic method are performed, where the probabilistic results
at different reliability levels are taken as the benchmarks of accuracy for judgment. It is
demonstrated that a nonprobabilistic model of uncertainty may be an alternative method
for buckling analysis of a column on a nonlinear mixed quadratic-cubic elastic founda-
tion under limited information on initial imperfection. �DOI: 10.1115/1.2998763�

Keywords: uncertain initial imperfection, nonlinear buckling, interval analysis, convex
modeling, probabilistic method

1 Introduction
A central difficulty in most deterministic buckling analyses of

imperfection sensitive structures is the choice of an appropriate
imperfection form, as it is conditional on prior knowledge of both
the shape and magnitude of the initial deviation—both of which
vary widely from case to case—seeing that they derive from an
arbitrary manufacturing process, itself subject �by its very nature�
to a large number of uncertain variables. Moreover, the state of
perfection �or imperfection� of the structure is governed during its
useful lifetime by a variety of external influences, which are more
or less uncertain. It is thus obvious that to be practicable, the
analysis of the buckling theories should be combined with uncer-
tainty analysis of the imperfection.

A probabilistic approach was first suggested in a study of
imperfect-sensitive structures by Bolotin �1�, who recognized that
the initial geometric imperfections were uncertain quantities that a
rigorous solution could be obtained in statistical terms. His work
was followed by a number of analyses �2–5�. On the other hand, it
was recognized in the recent decades that the probabilistic model
is not the only one that can be used to describe the uncertainty and
that uncertainty is not tantamount to randomness.

Nonprobabilistic set-theoretic models consist mostly of interval
analysis and convex modeling, where only the bounds on the un-
certain initial imperfection are needed. Ben-Haim and Elishakoff
�6� employed two classes of nonprobabilistic convex models to

determine the minimum buckling load of shells with general im-
perfection and gave a theoretical estimate of the knockdown fac-
tor. Lindberg �7,8� obtained the convex and probabilistic solutions
for the multimode dynamic buckling of cylindrical shells with
uncertain imperfections under symmetric radial impulsive loads.
Elseifi et al. �9� adopted a convex modeling of uncertainties in the
imperfection to predict the buckling load of a thin-walled stiffened
composite. Qiu and Wang �10� compared convex modeling and
interval analysis for the buckling failure measures of bars with
uncertain-but-bounded initial imperfection from mathematical
proof and numerical calculation.

This study is a generalization of earlier works of Elishakoff et
al. �11� and Qui et al. �12�, where buckling of a column on a
purely cubic foundation was considered. Here, the buckling load
of a finite column on a nonlinear mixed quadratic-cubic elastic
foundation for the worst possible imperfection shape within hy-
percuboid bounds and ellipsoidal bounds are calculated first; then
they are compared with the probabilistic buckling load from ran-
dom imperfection of comparable measure.

2 Deterministic Buckling Analysis of a Column on a
Nonlinear Mixed Quadratic-Cubic Foundation

Consider the system, as shown in Fig. 1, and the governing
equation is

EI
d4w

dx4 + P
d2�w + w̄�

dx2 + k1w − k2w2 − k3w3 = 0 �1�

where EI is the bending rigidity; w̄ is the initial imperfection
function; w is the additional deflection due to the axial load P; k1,
k2, and k3 are positive constants, representing the linear and non-
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linear spring constants of the foundation, respectively; and x is the
axial coordinate.

The column is simply supported, so that the boundary condi-
tions are

w =
d2w

dx2 = 0 at x = 0 and x = l �2�

where l is the length of the column.
Equation �1� can be modified by introducing dimensionless in-

dependent and dependent variables in the form

� =
x

l
, u =

w

�
, ū =

w̄

�
, � =

P

Pcl
, Pcl =

EI

l2 ��2m�
2 +

k1l4

EI�2m�
2�

�1 =
k1l4

EI
, �2 =

k2�l4

EI
, �3 =

k3�2l4

EI
, ���1� = m�

2�2 +
�1

m�
2�2

�3�

where � is the radius of gyration of the cross section, and Pcl is
the classical buckling load of a column on a linear elastic foun-
dation. Equations �1� and �2� then become

d4u

d�4 + ����1�
d2u

d�2 + �1u − �2u2 − �3u3 = − ����1�
d2ū

d�2 �4�

u =
d2u

d�2 = 0 at � = 0 and � = 1 �5�

Resorting to Galerkin’s method, we expand ū��� and u��� in
series in terms of the modes of stability loss of associated linear
structure

ū��� = �
k=1

�

�̄k sin k�� �6�

and

u��� = �
k=1

�

�k sin k�� �7�

Substituting them in Eq. �4�, multiplying the resulting equation
by sin�m���, and integrating, we arrive at the following infinite
set of coupled nonlinear algebraic equations for �m:

�m�m − ���m + �̄m� − s1�m�

m
�2

Jm − � s2

8
��m�

m
�2

Im = 0,

m = 1,2, . . . �8�
where

Jm = �
p=1

�

�
q=1

�

Bpqm�p�q, Im = 8�
p=1

�

�
q=1

�

�
r=1

�

Apqrm�p�q�r �9�

Bpqm =�
0

1

sin�p���sin�q���sin�m���d�

= B�p + q,m� + B�m + q,p� + B�m + p,q� − B�p + q,− m�
�10�

B�p + q,m� = 	0 m = p + q

1

4�

1 − �− 1��p+q−m�

p + q − m
m � p + q 


Apqrm =�
0

1

sin�p���sin�q���sin�r���sin�m���d�

=
1

8
�	p+q,r+m − 	�p−q�,r+m − 	p+q,�r−m� + 	�p−q�,�r−m� + 	p,q	r,m�

�11�

�m =
�m��2 + �1�m��−2

�m���2 + �1�m���−2 , s1 =
2�2

�1 + �m���4 , s2 =
2�3

�1 + �m���4

�12�

and 	ij is the Kronecker delta.
Although a closed solution of the infinite set of nonlinear equa-

tions in Eq. �8� seems to be unfeasible, these equations have to be
truncated and solved numerically.

Retaining only the m�− th term in the series in Eqs. �6� and �7�,
Eqs. �8� and �9� are reduced to a single equation, namely,

���m + �̄m� = �m�m − s1�m
2 −

3m�
2s2

8m2 �m
3 �13�

where

s1 =
4�2�1 − �− 1�m�

3m3�3���1�
, s2 =

2�3

�m���2���1�
�14�

When �2=0 and/or m is even, Eq. �13� is associated with a
column on a cubic foundation. It has been discussed in Refs.
�11,12�. In this study, the case that �2�0 and m is odd to be
considered, namely, a column on a nonlinear mixed quadratic-
cubic foundation is studied. It is also worth noting that according

to Eq. �13�, �m and �̄m have the same sign. This is seen from the

fact that the assumption �̄m�m
0 may imply �
0 for 0
 ��m�

�̄m �a tensile force�, which contradicts the terms of the problem.

Let us first consider a specific case where m=m�=1, �1=�4,

�2=0.4�1, and �3=0.1�1. The initial deflection �̄m is deterministic
in Eq. �13�, and if one arbitrary value is given for �m

*
, the external

axial load � can be calculated. By changing the value of �m
*
, we

can obtain the varying curve of � versus �m
*
, as shown in Figs.

2�a� and 2�b� for �̄m�0 and �̄m
0, respectively.
It can be seen from Figs. 2�a� and 2�b� that the external axial

load � experiences a course of “low-high-low,” where the maxi-
mum value is taken as the buckling load ��. It is worth noting that
the buckling load can exceed that of a perfect structure in Fig.

2�b� for �̄m
0. Hence, only the branch associated with �̄m�0 has
a physical sense.

The buckling load �� versus the initial deflection is shown in
Fig. 3 for m=m�=1, �1=�4, �2=0.4�1, and �3=0.1�1. The
dashed lines represent the meaningless branches of Eq. �13�.

We truncate Eqs. �8� and �9� and retain “the most important
modes.” Thus, Eqs. �8� and �9� can be rewritten as

F��1,�2, . . . ,�N,�� = �m�m − ���m + �̄m� − s1�m�

m
�2

Jm
�N�

− � s2

8
��m�

m
�2

Im
�N� = 0, m = 1,2, . . . ,N

�15�

where

Fig. 1 A column on a nonlinear mixed quadratic-cubic elastic
foundation

011007-2 / Vol. 76, JANUARY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Jm
�N� = �

p=1

N

�
q=1

N

Bpqm�p�q, Im
�N� = 8�

p=1

N

�
q=1

N

�
r=1

N

Apqrm�p�q�r �16�

in which N is the remained mode number.

As a result, Eq. �15� becomes the nonlinear algebraic equations
containing N equations and N+1 unknown quantities ��m�m
=1,2 , . . . ,N� and ��. For convenience in solving Eq. �15�, they
can be rewritten as

� =

�m�m − s1�m�

m
�2

Jm
�N� − � s2

8
��m�

m
�2

Im
�N�

�m + �̄m

, m = 1,2, . . . ,N

�17�
Subtracting the two adjacent equations in Eqs. �17� yields

��m+1 + �̄m+1���m�m − s1�m�

m
�2

Jm
�N� − � s2

8
��m�

m
�2

Im
�N��

− ��m + �̄m���m+1�m+1 − s1� m�

m + 1
�2

Jm+1
�N�

− � s2

8
�� m�

m + 1
�2

Im+1
�N� � = 0, m = 1,2, . . . ,N − 1 �18�

Equation �18� defines a relationship curve between �m�m
=1,2 , . . . ,N� and � in N+1 dimensional Euclidean space. Since
Eq. �18� is comprised of nonlinear equations containing N−1
equations and N unknown quantities, we can use the same solu-
tion procedure similar to the single equation Eq. �13�; namely,
given one arbitrary value for the additional deflection �m�

, the
other N−1 unknown �m �m�m�� can be solved from Eq. �18� by
the Newton–Raphson method. Thereby, the external axial load �
can be calculated from Eq. �17�. By changing the value of �m�

, we
can obtain the curve of � versus �m�

.
If the coefficients of the Fourier series are assigned to be con-

stants, it represents a deterministic initial deflection, and the buck-
ling load can be solved by the abovementioned method. However,
the initial geometrical imperfection usually exhibit uncertainties
due to the manufacture errors, measurement inaccuracies, and
other factors. In these cases, new approaches must be developed
to evaluate the buckling load according to the different descriptive
ways of uncertain initial imperfection.

3 Interval Analysis for Buckling Load
The first nonprobabilistic model for the initial imperfection is

that its Fourier expansion coefficient vector �̄= ��̄1 , �̄2 , . . . , �̄N�T

varies in the following hypercuboid set:

W��̄c,�A�:��̄m − �̄m
c � � �Am ��Am  0, m = 1,2, . . . ,N�

�19�

where �̄m
c and �A= ��A1 ,�A2 , . . . ,�AN�T are, respectively, the

central vector and bound vector of the Fourier series coefficient
interval.

As discussed before, the buckling load is a function of �̄ and
can be expressed formally as

�� = ���̄� �20�
Now the objective is to find the minimum buckling load for all

possible initial deflection �̄= ��̄1 , �̄2 , . . . , �̄N�T that is subject to the
constraint set in Eq. �20�. Then the problem becomes an extreme
value problem

min
�̄�W��̄c,�A�

�� = min
�̄�W��̄c,�A�

���̄� �21�

By virtue of the method of Lagrange multipliers, the Lagrang-
ian function is defined as

Fig. 2 External axial load � versus the additional deflection
�m�

Fig. 3 Buckling load �� versus the initial imperfection
amplitude
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L��̄,�,x� = ���̄� + �
m=1

N

�m���̄m − �̄m
c �2 − �Am

2 + zm
2 � �22�

where N is the number of the most significant modes involved in
computations, z= �z1 ,z2 , . . . ,zN�T is an auxiliary variable vector,
and �m �m=1,2 , . . . ,N� are Lagrange multipliers. According to
the extreme condition, we can obtain

�L

� �̄m

=
��

� �̄m

+ 2�m��̄m − �̄m
c � = 0, m = 1,2, . . . ,N �23�

�L

�xm
= �mzm = 0, m = 1,2, . . . ,N �24�

��̄m − �̄m
c �2 − �Am

2 + zm
2 = 0, m = 1,2, . . . ,N �25�

By solving the nonlinear algebraic equations Eqs. �23�–�25�, the
extreme points can be obtained. For example, if N=3, the solu-
tions for the set of equations �23�–�25� are

�̄i = �̄i
c � �Ai, �̄ j = �̄ j

c � �Aj, �̄k = �̄k
c � �Ak �26�

�̄i = �̄i
c � �Ai, �̄ j = �̄ j

c � �Aj, �̄k = 0 �27�

�̄i = �̄i
c � �Ai, �̄ j = 0, �̄k = 0 �28�

�̄i = 0, �̄ j = 0, �̄k = 0 �29�

From Eqs. �26�–�29�, 3N combinations must be solved. The
minimum value among the 3N solutions is taken as the minimum
buckling load.

Figure 4 gives a surface of the minimum buckling load obtained
by interval analysis with the variation in the center value of the
initial imperfections and their bounds. The parameters used for the
calculation in Fig. 4 are �1=�4, �2=�3=0.1�1, m�=2, and N=3.
The minimum buckling load surface will decrease with the center
value and their bounds of initial imperfections increasing.

4 Convex Modeling for Buckling Load
Following the method developed by Ben-Haim and Elishakoff

�13�, uncertainty in the initial imperfection profile is represented
by allowing the initial imperfection to vary in a convex set of
values bounded by an ellipsoid.

Z��̄c,e� =� �̄m:�
m=1

N
��̄m − �̄m

c �2

em
2 � 1 �30�

The semiaxes of the ellipsoid can be determined from an inter-
val vector

em = �Am, m = 1,2, . . . ,N �31�

For example, in two dimensional circumstances their relation-
ship can be represented, as shown Fig. 5.

To seek the minimum or least-favorable buckling load, the
problem can be transformed to a nonlinear optimization problem
in Eq. �20�, which is subject to constraint condition �Eq. �30�� as
follows:

min
�̄�Z��̄c,e�

�� = min
�̄�Z��̄c,e�

���̄� �32�

We still utilize the method of Lagrange multipliers and con-
struct a Lagrangian function as follows:

L��̄,�� = ���̄� + ���
m=1

N
��̄m − �̄m

c �2

em
2 − 1� �33�

where � is Lagrange multiplier.
Due to the necessary conditions for a minimum of �, the de-

rivative of the Lagrangian function vanishes

�L

��m

=
����̄�
��m

+ 2�
��m − �̄m

c �
em

2 = 0, m = 1,2, . . . ,N �34�

and the constraint condition is satisfied.

�
m=1

N
��̄m − �̄m

c �2

em
2 � 1 �35�

Equation �35� is an inequality, so the Lagrange multiplier must
satisfy one of the following relations:

� = 0 if �
m=1

N
��̄m − �̄m

c �2

em
2 
 1 �36�

and

�  0 if �
m=1

N
��̄m − �̄m

c �2

em
2 = 1 �37�

Under the condition of Eq. �36�, it implies that the possible
minimum value point occurs in the interior. If the derivatives of

����̄� /��̄m exist, then the combination of Eqs. �34� and �36� yields

����̄�
��m

= 0, m = 1,2, . . . ,N �38�

Under the condition of Eq. �37�, it is implied that the possible
minimum value point occurs on the boundary. Then, the following
nonlinear simultaneous algebraic equations need to be solved:

����̄�
��m

+ 2�
��m − �̄m

c �
em

2 = 0, m = 1,2, . . . ,N

�
m=1

N
��̄m − �̄m

c �2

em
2 − 1 = 0 �39�

The differences of Eq. �39� from the general formula of convex
modeling are that it is implicit and that it contains the derivative

Fig. 4 Buckling load �� from interval analysis

Fig. 5 The ellipse enclosed by a rectangle
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terms. We can obtain the nonlinear solutions of Eq. �39� by using

Newton–Raphson method, where the derivatives ����̄� /��̄m will
be replaced with difference approximation.

However, at some points, ����̄� /��̄m may not exist. Thus, the

points at which the derivatives ����̄� /��̄m do not exist and the
solution points in Eqs. �34�–�39� are all the candidate extreme
points.

Substituting all candidate extreme points into Eq. �20� yields all
candidate extreme values, and the smallest one among them will
be the minimum or least-favorable buckling load by convex mod-
eling.

Figure 6 depicts the surface of the buckling load computed by
convex modeling with the variation in the center value of the
initial imperfections and their bounds. The parameters used for the
calculation in Fig. 6 are �1=�4, �2=�3=0.1�1, m�=2, and N=3.
The minimum buckling load surface will decrease with the center
value and their bounds increasing.

5 Monte Carlo Method for Buckling Load
In some cases, if we can obtain statistical properties of an initial

deflection by measurements or past experience, the initial deflec-
tion should be treated as the random variable. The normal distri-
bution is a popular choice, but it may not be appropriate for real-
istic cases since the initial deflection can be visualized as limited
in a certain range. To proceed with the reliability analysis, a trun-
cated normal distribution model for the Fourier series coefficients
of uncertain initial imperfection can be applied as follows �11�:

p��̄m� = 	cm exp�−
�̄m

2

bm
2 � , ��̄m − �̄m

c � � �Am

0, ��̄m − �̄m
c � � �Am


 �40�

where p��̄m� is the probability density function of �̄m, each �Am is

the maximum possible value for the random variable �̄m, bm rep-
resents various parameters, and cm represents the normalization
constants, which can be derived from

cm = �2bm erf��Am

bm
��−1

�41�

in which erf�·� is the error function and is defined as �14�

erf�x� =�
0

x

e−t2dt �42�

Figure 7 shows the probability density functions of the random
coefficients at different parameters bm and �Am. If �Am is given,
then the probability density depends exclusively on bm. The de-

viation in �̄m increases with the growth in bm, namely, a large bm

corresponds to a large deviation in �̄m. When bm
2 ��Am

2 , �̄m is
nearly uniformly distributed, as shown by the case of bm=1 in
Fig. 7.

The realization of �̄m, denoted by ��̄m�k, k=1,2 , . . ., can be
generated by

��̄m�k = bm erf−1��2	k − 1�erf��Am

bm
�� �43�

where 	k, k=1,2 , . . . are independent random numbers uniformly
distributed in �0,1�.

With the given parameters �Am and bm in the probability den-

sity functions p��̄m� for the initial deflection, Monte Carlo simu-
lations can be carried out to obtain the probability density for the
buckling load. Consequently, at different reliability levels the
buckling loads can be obtained by the following reliability func-
tion definition:

R��� = Prob���  �� �44�

where �� is the admissible value for the axial load.

6 Numerical Examples

6.1 Single-Mode Imperfection Model. First, for m=m�=1
the single-mode approximation suffices for the buckling load ap-
proximation �5�. The linear and nonlinear spring constants are
taken as �1=�4, and �2=�3=0.1�1, respectively. The initial de-
flection is uncertain and the Fourier coefficients are given by the

inequality �̄m� ��̄m : ��̄m− �̄m
c ���A� for the interval bound and �̄m

���̄m : ��̄m− �̄m
c �2 / �A2 �1� for the ellipsoidal bound. For

m=1—noting that the constrained conditions of the initial deflec-
tion are identical for interval bound and ellipsoidal bound—the
buckling loads yielded by interval analysis and convex modeling
are also identical.

From the methodology in Secs. 3–5, we can calculate the buck-
ling load with the single-mode initial imperfection. Figures 8 and
9 depict the curves of the buckling load �� of two nonprobabilistic
methods versus the uncertain radius �A with different center val-

ues �̄c in comparison with the Monte Carlo method at different
cases of b=0.1 and b=1.

One case, namely, for b=0.1 for the truncated normal distribu-

tion of the initial deflection, is shown in Fig. 8�a� ��̄c=0.0� and

Fig. 8�b� ��̄c=0.01�. The following conclusions hold.

Fig. 6 Buckling load � computed from convex modeling

Fig. 7 Probability density function for a truncated normally
distributed random variable
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�a� The influence of the uncertainty radius �A on the buck-
ling load �� decreases as �A increases �with the given

center value �̄c�.
�b� The buckling load �� decreases with an increase in the

center value �̄c. For example, when �̄c=0.0 and �A=0.0,
the probabilistic and nonprobabilistic solutions are 1.0.

At �̄c=0.01 and �A=0.0, they are 0.99748 and 0.94528,
respectively.

�c� The minimum buckling load obtained from the probabi-
listic approach may be well above that calculated by non-
probabilistic methods for large �A ��A�0.1 in the
present case�. This implies that the use of the nonproba-
bilistic methods may lead to a conservative design. How-
ever, if the deviation in the initial deflection is small
��A
0.1 in the present case�, a design can be made
based on the nonprobabilistic methods since it is much
simpler than the probabilistic one.

Another case, namely, for b=1 for approximately uniform dis-

tribution of the initial deflection, is shown in Fig. 9�a� ��̄c=0.0�
and Fig. 9�b� ��̄c=0.01�. We observed from Figs. 9�a� and 9�b�
that the minimum buckling load �� decreases with an increase in

�̄c and �A. Moreover, the minimum buckling loads yielded by the
nonprobabilistic methods and the probabilistic approach do not
exhibit much difference. Therefore, a design can be made based

on the nonprobabilistic methods when the sufficient knowledge
about the initial imperfection is absent and cannot be substantiated
for substantiation of the probabilistic analysis.

6.2 Multimode Imperfection Model. Consider the multi-
mode imperfection model. The linear and nonlinear spring con-
stants are taken as �1=16�4 and �2=�3=0.1�1, respectively.
Three modes are retained in the computations, and every Fourier

coefficient �̄m �m=1,2 ,3� is assumed to have the same bound

�Am, the same center value �̄m
c , and the same parameters bm,

namely, �A1=�A2=�A3=�A, �̄1
c = �̄2

c = �̄1
c = �̄c, and b1=b2=b3=b.

For m�=2, the variations in the minimum buckling load with �A
in the cases of b=0.1 and b=1 will be investigated.

Figure 10�a� ��̄c=0.0� and Fig. 10�b� ��̄c=0.02�, for the case of
b=0.1, present a comparison of the minimum buckling load with
the increasing �A computed from the interval analysis and convex
modeling. The admissible loads corresponding to the given reli-
ability levels �R=0.90,0.99,0.999� are calculated from the Monte
Carlo method and are depicted in the same figures.

For small �A �namely, �A
0.2 in the present case�, Figs.
10�a� and 10�b� demonstrate that the minimum buckling load and
the admissible load corresponding to different reliability levels
�R=0.90,0.99,0.999� do not show much difference. However, if
the bound for the initial deflection is large ��A�0.2 in the present
case shown in Fig. 10�, the admissible value for the axial load
obtained from the Monte Carlo method may be well above the

Fig. 8 Comparison of the buckling load computed from proba-
bilistic and nonprobabilistic methods for cases of b=0.1: „a…
�̄c=0.0, and „b… �̄c=0.01

Fig. 9 Comparison of the buckling loads computed from
probabilistic and nonprobabilistic methods for case of b=1.0:
„a… �̄c=0.0, and „b… �̄c=0.01
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minimum buckling load calculated by either convex modeling or
interval analysis. This implies that the use of the nonprobabilistic
methods may lead to a conservative design.

It also can be seen from Figs. 10�a� and 10�b� that the center

value �̄c has significant influence on the buckling load ��. It de-

creases with an increase in �̄c.

Figures 11�a� ��̄c=0.0� and 11�b� ��̄c=0.02� give the results for
the case of b=1.0. The buckling loads obtained by convex mod-
eling are above the results of the reliability at different reliability
levels �R=0.90,0.99,0.999�. However, the buckling loads ob-
tained by interval analysis are below those obtained by the proba-
bilistic approach.

7 Conclusion
In this paper, two classes of set-theoretical models, interval

analysis, and convex modeling are employed for the initial imper-
fection sensitive structure—a finite column on nonlinear mixed
quadratic-cubic elastic foundation. The minimum buckling load is
determined as a function of the parameters, which describe the
range of possible initial imperfection profiles of the column,
where the nonzero central values for them are studied. The com-
parison of the results obtained from nonprobabilistic methods and
probabilistic approach indicates that the design based on the non-
probabilistic methods is acceptable for a large deviation in the
initial deflection but may be conservative for that with a small
deviation.

It is remarkable that although being of cardinally different na-
ture, the nonprobabilistic and probabilistic methods may yield
close values for the design axial loads. If probabilistic information
is unavailable, one should not propose the probabilistic method
based on an arbitrary assumption on the distribution of the Fourier
coefficients. One should use the nonprobabilistic method to uncer-
tainty. The difference between interval analysis and convex mod-
eling is the description of the uncertain variable, a hypercuboid
for the former and a hyperellipsoid set for the latter. The selection
for the two nonprobabilistic models is decided by the descriptive
form of the prior information.
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Fig. 10 Comparison of the buckling loads computed from
probabilistic and nonprobabilistic methods for case of b=0.1:
„a… �̄c=0.0, and „b… �̄c=0.02

Fig. 11 Comparison of the buckling loads computed from
probabilistic and nonprobabilistic methods for case of b=1.0:
„a… �̄c=0.0, and „b… �̄c=0.02
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Light Activated Shape Memory
Polymer Characterization
Since their development, shape memory polymers (SMPs) have been of increasing inter-
est in active materials and structures design. In particular, there has been a growing
interest in SMPs for use in adaptive structures because of their ability to switch between
low and high stiffness moduli in a relatively short temperature range. However, because
a thermal stimulus is inappropriate for many morphing applications, a new light acti-
vated shape memory polymer (LASMP) is under development. Among the challenges
associated with the development of a new class of material is establishing viable char-
acterization methods. For the case of LASMP both the sample response to light stimulus
and the stimulus itself vary in both space and time. Typical laser light is both periodic
and Gaussian in nature. Furthermore, LASMP response to the light stimulus is dependent
on the intensity of the incident light and the time varying through the thickness penetra-
tion of the light as the transition progresses. Therefore both in-plane and through-
thickness stimulation of the LASMP are nonuniform and time dependent. Thus, the de-
velopment of a standardized method that accommodates spatial and temporal variations
associated with mechanical property transition under a light stimulus is required. First
generation thick film formulations are found to have a transition time on the order of 60
min. The characterization method proposed addresses optical stimulus irregularities. A
chemical kinetic model is also presented capable of predicting the through-thickness
evolution of Young’s modulus of the polymer. This work discusses in situ characterization
strategies currently being implemented as well as the current and projected performance
of LASMPs. �DOI: 10.1115/1.2999447�

Keywords: light activated shape memory polymer (LASMP), material characterization,
morphing materials

1 Introduction
Recently, shape memory polymers �SMPs� have been the sub-

ject of increasing attention among materials with promising char-
acteristics for adaptive structures. Their ability to switch between
high and low moduli while retaining a “memorized” shape make
them desirable for ambitious designs requiring deformable com-
ponents capable of carrying complex loads. For instance, biode-
gradable formulations have been designed �1� and are being
implemented in the biomedical field as stents for treatment of
cardiovascular disease and aneurysms �2,3�. They are being uti-
lized in the aeronautical and astronautical fields in morphing air-
craft structures �4,5� and in the automotive industry as active air
dams and actuators for improved fuel economy and performance
�6�.

By far the most researched class of SMP is the heat activated
type. Extensive experimental studies have been performed char-
acterizing their thermomechanical properties �7–10�, their resis-
tance to humidity �11–13�, strain induced anisotropic characteris-
tics �14�, thin film characteristics �15,16�, and shape recovery
characteristics �17,18�.

While there may be advantages to applying a heat activated
SMP in some designs, effective delivery and control of the ther-
mal stimulus often requires sophisticated heating and cooling
schemes such as the use of magnetic nanoparticles �19,20�. Fur-
thermore, all of the proposed schemes still suffer from one funda-
mental disadvantage. Heat activated SMP requires continuous en-
ergy input to maintain the polymer in its low modulus state,
resulting in large energy requirements over time.

One alternative is to replace heat activated SMPs with optically
stimulated SMPs �21–24�. Light activated shape memory poly-
mers �LASMPs� benefit from lower energy requirements to switch
between moduli. The LASMP virgin state is soft; additional cross-
links form upon the application of a particular wavelength of light
thereby increasing the stiffness. When the light stimulus is re-
moved, the polymer remains in this stiff state. Imposing a differ-
ent wavelength of light reverses the cross-linking, returning the
sample to a soft state �21,23�. Lee et al. �25� report the heat of
crystallization of a thermally stimulated polyurethane block co-
polymers as being between 16.4 J/g and 324.2 J/g, depending on
the composition. Conversely, as reported below, current formula-
tions of LASMP require only �1.4 J /g for transition, represent-
ing at least an order of magnitude reduction in power consumption
and offering clear motivation for further developments of
LASMPs.

While there have been several successful research initiatives
formulating and characterizing various LASMPs �21–24,26–30�,
few formulations have been designed and characterized based on
their ability to reversibly switch between two unique stiffness
states. Polymers labeled as LASMP fall under two main catego-
ries: those requiring external forces to undergo shape change and
those that do not. The former, such as that developed by Lendlein
et al. �24� are mechanically similar to heat activated SMPs, in that
the light supplied to the polymer is utilized solely for material
property changes. Such a polymer is the object of the presented
work. The latter subcategory of LASMP is most often presented
as an artificial muscle �28–30�. These LASMPs are capable of
length changes �30� and/or bending �28,29� initiated by light
stimulus. However, all of the aforementioned studies focus on thin
film samples where the transmission of light through the sample is
not a significant concern. As an example, Ikeda et al. �28� report
using 10 �m thick samples with only the material within 1 �m
of the surface of the sample significantly altered by optical stimu-
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lus. While in comparison to thermally stimulated SMPs, LASMP
transition power requirements motivate its development as a vi-
able alternative, this development also comes with the challenge
of establishing that LASMP could be meaningfully employed
in similar load bearing applications such as morphing aircraft
structures.

In the current effort the emphasis is enabling the development
and application of LASMP in load bearing structures inappropri-
ate for thin films; in this scenario through-thickness delivery and
transmission of light become important parameters. Because the
characterization process will necessarily face temporal and spatial
variations in stimulus and material property transition, application
of a well defined and standardized approach will be imperative to
the successful development and evolution of LASMPs. Material
properties of immediate importance include Young’s modulus and
Poisson’s ratio in both the hard and soft states, and the time and
power required for the transitions between the states. In addition,
an appropriate understanding of how the transition manifests itself
in the light activated material is required. Thus this effort seeks
foremost to define a characterization methodology appropriate to
the physical phenomena inherent to the optical stimulus as well as
the class of material itself; experimental results and analysis are
provided for an example case.

2 Experimental Considerations
LASMPs employ the use of lasers at different wavelengths to

switch between modulus states. The virgin state for the samples
considered in this study is soft; imposing a 325–385 nm laser light
activates photomonomer cross-linking, resulting in increased stiff-
ness. Reverse stimulus is achieved by imposing a 248–280 nm
laser light.

2.1 Laser Considerations and Sample Positioning. Nonuni-
form distribution of laser light at the sample and fluctuations in
the intensity of the laser result in a complex pattern of polymer
stimulation. With the intention of standardizing the practices used
to describe this new class of polymers, these fluctuations in stimu-
lation by the laser must be accounted for. The following discusses
typical variations and corresponding proposed LASMP character-
ization procedures.

2.1.1 Laser Intensity Fluctuations With Time. It is not uncom-
mon for laser output intensity to vary periodically in time. By
placing an optical power meter in the path of the laser beam and
measuring the intensity of the light over a length of time, fluctua-
tions in the power output of the laser can be measured. For in-
stance, the laser utilized for this particular study is a 150 mW
class IIIb He-Cd Omnichrome laser manufactured by Melles Groit
Laser Group, has an optical power output of 19.0 mW at 325 mW
and 55.0 mW at 442 nm, and is allowed an ample warm-up time
of 20 min or more before testing. The resulting steady state sinu-
soidal output displays a period of 1200 s ��20 min� with a 0.015
nW peak-to-trough amplitude with 9.2 �W incident at the
sample. The LASMP characterization must accommodate for the
time variation of the imposed stimulus.

The LASMP proof-of-concept samples investigated in this ef-
fort require �60 ��20� minutes to fully transition. For this case it
is adequate to place an optical power meter behind the sample to
monitor the extent and rate of fluctuation. Ultimately however,
LASMP development efforts are expected to yield formulations
that transition in about 1 s �31�. Simply monitoring the exiting
light will not be adequate for establishing the position of the laser
output on its intensity curve. This will have to be established
immediately prior to sample stimulation in order to properly com-
pute the polymer’s power requirements.

2.1.2 Laser Intensity Distribution. In addition to fluctuating
over time, the laser’s power output is also nonuniform in space.
While it is generally accepted that most lasers will exhibit beams
that are Gaussian in nature �32�, this is not desirable for establish-

ing a repeatable LASMP characterization method, rather, impos-
ing a stimulus that is as uniform as possible is sought. Figure 1
illustrates the significance of this point. The rate of state change of
an infinitesimal unit element of LASMP is dependent on the in-
tensity of light imposed. Furthermore, and as will be discussed in
more detail below, the through-thickness penetration of the light
intensity is nonuniform in space and time. In the worst case sce-
nario �Fig. 1�a�� the region of material at the center of the incident
light will fully transition to the stiff state in a short time, while
regions removed from this location will transition at progressively
slower rates. Some regions of the sample will transition so slowly
that experimental identification of complete transition will be pre-
mature. While the through-thickness penetration effect is unavoid-
able, the effects of in-plane variation in incident light may be
minimized by diffusing the light �Fig. 1�b��. However, the optics
required to position and diffuse the beam making it viable for
transitioning the polymer over a large area also cause the resulting
beam, as seen by the sample, to be somewhat irregular. Therefore,
it is appropriate to characterize the spatial light distribution prior
to investigating the stimulus response.

A contour map of the optical power delivered to the sample
considered in this work is created by �1� covering the power meter
with an opaque material �in this case, a 1.2 mm thick posterboard�
with a 0.58 mm diameter pinhole, �2� attaching the meter to a
sliding 90 deg optical mounting bracket that is fixed to the cross-
head of the load frame, and �3� mapping the laser power incident
on the sample over 1 mm square grid increments, with the area of
the sample being centered on the grid and encompassing 4
�25 mm2. Since the optical power meter sensor is 20 mm in
diameter and thus unsuitable for characterizing a beam 10 mm in
width, an opaque material is used to cover it with a centrally
located pinhole. A pinhole size of 0.58 mm was chosen to allow
the precision needed for a 1 mm square grid of data while still
allowing enough light to penetrate through to the sensor for an
accurate reading. The load frame utilized throughout the study is
an MTI 1-K tabletop load frame with a 2.5 lb �11 N� ell, accurate
to 7.5�10−4 lb �3.3 mN�. The data are then conditioned in
MATLAB® using the griddata�cubic� function to produce contour
and surface plots of the optical power seen by the sample, pictured
as Figs. 2 and 3, respectively. Figure 2 also illustrates how this
information is to be used to properly place the sample within the
diffused light in order to impose a stimulus that is as uniform as
possible.

To determine where within the contour the sample lies during
testing, a strip of 35 mm film is positioned behind the sample in
the load frame and is exposed to the laser. By examining the

Fig. 1 A „top…—sample exposed to direct laser light: Zone 1 is
the high optical stimulus in the laser beam center and Zone 2 is
the little optical stimulation away from the beam; B „bottom…—
laser diffused with convex cylindrical lens
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resulting shadow of the sample on the film, pictured in Fig. 4, one
can locate the position of the sample within the laser light. For the
LASMP sample considered here, this comparison leads to the
sample encompassing the space outlined from 3.0 mm to 6.9 mm
horizontally and from 7.5 mm to 37.5 mm vertically in the con-
tour plot in Fig. 2.

Once the sample has been appropriately placed within the light
stimulus, the portion of the sample experimentally monitored is
further refined via the application of a video extensometer. Only
the material between the marked lines tracked by the system is
responsible for the material’s measured properties. Accounting for
the gauge length measured by the video extensometer, the area of
the sample utilized for material characterization is reduced to the
vertical space contained from 10 mm to 35 mm in Fig. 2, indi-
cated by the rectangular box. Dividing the sample into five verti-
cal strips, the extent of irregularity in incident light intensity de-
livered to the surface is summarized in Table 1. Utilization of
these data is addressed below in the discussion of results and data
analysis.

2.2 In Situ Measurements. Because it is desirable to estab-
lish property changes of LASMP as a function of time, in situ
characterization is required. In addition, the fundamental concepts
underlying dynamic material analysis �DMA� characterization are
particularly favorable for characterizing the soft-to-hard transi-
tion. Dynamic material analyzers allow the creation of a modulus
versus the time curve to be created for each test specimen. How-
ever, it is infeasible to optically stimulate and subsequently moni-
tor LASMP response within a traditional DMA or similar avail-
able devices. The strategy proposed below mimics DMA testing
while employing a video extensometer to monitor response.

2.2.1 Experimental Control. Custom DMA-mimicking load
frame control software was created. This control strategy effec-
tively converts a small tabletop load frame into a DMA that waits
for user input before completing each cycle. The software is easily
interfaced with other experimental control software, such as laser-
to-load-frame synchronization. This experimental setup effec-
tively allows the laser to be turned off or shuttered during inter-

Table 1 Average and median optical power for five bins spaced horizontally across the
sample

Bin �mm�
3.0

3.79
3.80
4.58

4.59
5.37

5.38
6.16

6.17
6.90

Ave. �nW� 5.19 5.85 6.18 5.98 4.89
Med. �nW� 5.56 5.77 6.10 6.11 6.17

Fig. 2 Contour plot of optical power, sample location outlined
by black rectangle

Fig. 3 Surface plot of optical power as seen in the sample

Fig. 4 Film depicting the laser shadow of a sample during
testing
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mittent cycles of testing. A brief tensile test �approximately 2 min
in duration� restricted to below the yield stress of the polymer is
periodically performed, with the grips returning to their pretest
position after the completion of each cycle. Testing continues until
steady state loading response is achieved. The result is a measure-
ment of overall sample stiffness and Poisson’s ratio with respect
to laser exposure during transition, allowing small time spans be-
tween data points.

2.2.2 Sample Type and Grip Interface. An important area of
interest when mechanically testing any polymer is the choice of
sample type and the interface between the grips and the sample.
Dogbone samples are generally preferred; the thinnest segment, or
gauge length, of the sample dominates the strain response, thereby
minimizing grip effects. However, LASMP synthesis constraints
result in sample sizes too small to justify the material loss asso-
ciated with the creation of dogbone samples. The proposed strat-
egy subsequently adheres to ASTM Standard 882 for thin films,
where the typical sample thickness is 0.10 mm. Furthermore, this
approach better enables comparison between early LASMP thin
film reports and the comparatively thick films considered here.
�While the ASTM standard is entitled “for thin films,” 0.10 mm is
considered thick for LASMP, and appropriately allows consider-
ation of the evolution of through-thickness property transition.�

It should be noted that when transitioning from the soft to hard
states, only the sample is exposed to light transitions. The result is
that the portion of the sample covered by the grips remains in the
virgin soft state. When testing a sample in this circumstance, the
sample tends to undergo slight necking in the region of the grips
�but does not slip, as seen in the video feed from the extensom-
eter�. In order to prevent this phenomenon from skewing the data,
a video extensometer accurate to 0.3 �m �1�10−6% strain� is
employed to monitor only a region far from the grips where the
assumption of uniform load distribution is appropriate. From
Saint-Venant’s principle we know that the stress field “sufficiently
far” from the application of forces can be considered uniform;
“sufficiently far” is generally considered to be one characteristic
length of the test specimen �33�. The video extensometer accom-
plishes this by tracking appropriately placed lines painted on the
back of the sample. Furthermore, a filter is placed between the
video extensometer lens and the specimen to reduce glare caused
by the laser.

2.2.3 Effects of Cyclic Loading. When testing any one sample
multiple times, as described above, it is necessary to consider
sample cyclic effects such as low cycle fatigue. As an example, a
test to determine the evolution of Young’s modulus as a function
of exposure time may be subject to a total of 25 cycles. Therefore,
low cycle fatigue tests, without the lasers, must be conducted to
establish the extent of change that may be attributed to the light
stimulation alone versus that attributed to cyclic loading. �While
cyclic degradation of response is not expected to be an issue in
future LASMP formulations, this characterization is currently nec-
essary to ensure the elimination, via a synthesis feedback loop, of
this undesirable property �31�.�

As an example, one of the early LASMP formulations demon-
strated 7% and 10% strain softening after 25 cycles in the fully
hard and fully soft states, respectively. This fatigue style test also
revealed that the degradation in stiffness with each cycle, for this
particular formulation, is nearly linear. So in this example case,
knowing the number of cycles completed, an adjusted light stimu-
lated Young’s modulus may also be reported.

3 Results and Data Analysis

3.1 Stiffness Versus Nonuniform Incident Light. As dis-
cussed in Sec. 2.1.2, even after centering the sample the incident
light is nonuniform. At this point there are several acceptable
approaches to relating the experimentally determined volume av-
eraged modulus to the in-plane variations in sample modulus

given the distribution of optical intensity. The first, and easiest,
approach is to treat the areas of low intensity as small compared to
the size of the test specimen.

In the sample in Fig. 2, 8.8 mm2 of the sample �9% of the total
area� is exposed to intensities below 5.0 nW. As noted in Table 1,
the median value of the optical power across the sample horizon-
tally is relatively constant. The difference between the maximum
and minimum median values is 0.61 nW, which corresponds to a
difference of about 11% with respect to the minimum median. In
some instances it may be adequate to simply assume a uniform
sample when calculating Young’s modulus, as well as other prop-
erties, using the average or median optical power intensity over
the sample, in this case 5.62 nW and 5.83 nW, respectively. �It is
noteworthy that these values are based on the “pinhole” method
described earlier and thus are numerically accurate for investigat-
ing the spatial variations in optical intensity. To calculate the ac-
tual power hitting the sample, the percentage of power hitting the
sample based on the pinhole method is multiplied by the total
power reaching the sample. Such a calculation results in the
sample receiving 0.066 W /m2 of optical power.�

In cases where incident light variation is significant, or higher
degrees of accuracy are sought, it may be acceptable to adapt the
rule of mixtures �34� to fit this specific test

Es = �
i=1

j

�iEi �1�

where Ei is Young’s modulus of one bin, �i is the volume fraction
of that bin, and Es is the volume averaged Young’s modulus of the
LASMP sample. In application, Ei would then be dependent on
position, optical intensity, and time. Such an approach lends itself
well to the method described above of dividing the sample into
bins of relatively constant intensities. The accuracy could easily
be manipulated through varying the resolution of the bin sizes.

3.2 An Example of Experimentally Observed Stiffness
Evolution. The method described above was applied to several
recent LASMP formulations. For the current state of the art
LASMP experimental emphasis is on enabling a synthesis feed-
back loop in the identification of especially promising LASMP
chemical formulations. At present it is prohibitively expensive to
create more than one to a few samples per formulation in this
evolutionary process. However, once select formulations have
demonstrated promise synthesis costs will become justifiable and
the application of the procedures detailed here will transition to
characterization concerns such as repeatability of material
response.

The transition time of all of the thick samples considered here
ranged from �40 min to �80 min while the increase in stiffness
ranged from �3X to �8X when exposed to 325–385 nm light.
The formulation presented for illustration was selected because of
its relative lack of cyclic property degradation and strength of
property change ��7X�.

Because the total transition time of the example formulation is
�80 min, the lasers are not shuttered during these tests. The re-
sulting error is assumed to be small; this assumption is supported
by inspection of the linear nature of the loading portion of the
sequentially nested stress-strain curves illustrated in Fig. 5. The
data collected from the test are then divided into individual stress-
strain curves and evaluated for material parameters. Volume aver-
aged Young’s modulus of the sample Es is then calculated to be
the slope of the linear portion of each cycle, a time dependent
graph of which is pictured in Fig. 6.

The region of the curve pictured in Fig. 5 depicting negative
stress is a result of the experimental procedure. After each strain
cycle is completed, the grips of the load frame are instructed to
return to their prestrain location more rapidly than the polymer
recovers from the strain. This ensures that the sample recovers
from the applied strain as quickly as possible before beginning the
subsequent cycle. This viscous behavior is not observed in all
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LASMPs and is not expected to be prevalent in the evolution of
LASMP formulations. Detailed consideration of this response is
therefore neglected at this time.

The formulation presented in Fig. 5 has an initial Young’s
modulus of 4 MPa and stiffens through cross-linking to a steady
state value 30 MPa in approximately 80 min. This represents a
sevenfold increase in Young’s modulus of the material.

Cleaving of the light stimulated cross-links is achieved through
reverse stimulation via exposure to 248–280 nm light. A similar
procedure to that outlined above for the time evolution of the
hardening of the sample is then employed for the time evolution
of the softening of the sample. The resulting data similar to Fig. 5
are then evaluated for Young’s modulus yielding Fig. 7. The for-
mulation shown reaches a steady state Young’s modulus of 21
MPa after just over 3 h. The extended time period needed for
cleaving is expected in this effort because the reverse-stimulus
light source is a pulsed UV laser emitting 40 �s pulses at 20 Hz
versus the continuously emitting laser used for cross-linking.

The total time for transition of the sample may at first appear
large compared with thin film studies. For instance, Ikeda et al.
�28� report transition times of 20 s and 30 s. However, the current
investigation focuses on the property evolution of a polymer with
dimensions suitable for load bearing applications. This necessi-
tates the application of thick polymer samples and the correspond-
ing consideration of light transmittance and property evolution
through the sample thickness. Earlier studies of thin films neglect
these issues via study of sample thickness one to two orders of
magnitude smaller.

3.3 Through Thickness Optical Properties. LASMPs are
unique in that the absorption of light enables transition, while the
transmission of light is required for through-thickness property
transition. It is therefore desirable to quantify the evolution of
both absorption and transmission in LASMP. In inactive materials
the Beer–Lambert–Bouguer law �Eqs. �2�–�4� �35�� predicts an
exponential decay in the transmitted optical power through the
thickness of the material �35�. Thus, the intensity of light trans-
mitted through the material quickly diminishes.

A = log10� Io

Ii
� �2�

� =
4�k

�
�3�

A = �lS �4�

Here, A is the absorbance of the polymer, Io and Ii are the incident
and transmitted optical intensities, respectively, � is the absorp-
tion coefficient, k is the extinction coefficient, � is the wavelength
of incident light, l is the sample thickness, and S is the concentra-
tion of absorbing species of the material.

To measure the absorption of the LASMP and to validate the
use of Beer–Lambert–Bouguer’s law, the optical power meter is
positioned behind a sample and measurements are taken at incre-
mental sample strains. The laser is shuttered between measure-
ments; the total amount of time the sample is exposed to the laser
is negligible compared with the time required for transition. The
thickness of the sample at each measurement is calculated from
the measured strain and Poisson’s ratio. Equations �2�–�4� are then
used to calculate the absorbance of the polymer. Figure 8 illus-
trates that the absorbance of the polymer is nearly linear with
respect to sample thickness, as required by Eq. �4�, supporting the
use of Beer–Lambert–Bouguer’s law to model LASMP.

Not illustrated, but of potential significance in the development
of LASMP is that the absorbance of the polymer changes with
transition. Absorbance of light results in photomonomer cross-
linking and a corresponding decrease in the concentration of that
absorbing species. Two experimental procedures are required to
assess the impact of the evolution of light absorption: �1� analo-
gous to the procedure accompanying Fig. 8, measurement of the
light transmitted through a sample must be taken at several differ-
ent exposure times and strains, and �2� measurement of the light
transmitted through the sample throughout the transition process
�Fig. 9�.

For the current state of the art LASMP it is found that at any
given point in time the polymer follows Beer–Lambert–Bouguer’s
law, while the total change in transmitted light is only 9%. Fur-
thermore, when the magnitude of this exiting light intensity Ii is

Fig. 5 Example in situ experimental results. Shown are the
results of the ten 2 min tests spaced 5 min apart with the load-
ing portion of select curves labeled.

Fig. 6 Time evolution of Young’s modulus for sample exposed
to 325–385 nm light

Fig. 7 Time evolution of Young’s modulus for sample exposed
to 248–280 nm light
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compared with the magnitude of incident intensity Io
�0.354 �W�, a change of only 0.005% is observed. Thus for the
current state of the art in LASMP the Beer–Lambert–Bouguer law
may be applied directly, without modification. �Also evident in
Fig. 9 are the fluctuations of laser intensity discussed in Sec.
2.1.1.�

While for the current state of the art in LASMP development
the experimental procedures described for assessing the evolution
of absorbance prove only to be precautionary, discarding these
procedures as LASMP formulations evolve is discouraged.
LASMP performance will improve as synthesis procedures
progress toward enabling higher concentrations of photomonomer
coupled with improved optical transparency. The paradox is that
the Beer–Lambert–Bouguer law is known to become less accurate
at high species concentrations, as well as in materials with high
scattering �35�; in future LASMP formulations it may become
inappropriate to directly impose the Beer–Lambert–Bouguer law.
A possible solution is to phenomenologically treat the absorption
coefficient as dependent on material thickness as well as laser
exposure time.

4 Modeling Through-Thickness Stiffness Evolution
In this section a model appropriate for the through-thickness

evolution of stiffness for a current state of the art LASMP is
presented. Based on the Beer–Lambert–Bouguer law; the optical
intensity of light through the thickness of a sample decays expo-
nentially. From data collected to generate Fig. 8, this decay is
found to be

I�x� = e−82x �5�

where x is the through-thickness position. The chemical kinetics
of the system are assumed to be bimolecular in nature, making the
reaction causing cross-linking second order �Eq. �6�� �36�.

�P

�t
= k1S�S − P� �6�

Here, P is the concentration of the cross-linked product, t is time,
k1 is a constant, and S is the concentration of optically activated
species. The degree of cross-linking is assumed to be proportional
to the intensity of the light and the concentration of photo-active
species at any given point and time, thus,

S = k2IU �7�

Here, k2 is a constant, U is the concentration of uncross-linked
photo-active species, and I is the light intensity at the given loca-
tion, expressed by Eq. �5�. It is important to note the distinction
between S, the concentration of optically activated species, and U,
the concentration of optically active species. U is the amount of
material in the sample that, given enough time and optical energy,
has the ability to cross-link. S is the amount of material in the
sample that, at the current time, has sufficient optical energy to
cross-link.

The local modulus of the polymer at any given point in the
material is assumed to be proportional to the degree of cross-
linking. Thus, having an expression for the change in concentra-
tion of cross-linked product P with respect to time and the change
in concentration of optically activated species S, Young’s modulus
of the polymer at any point through the thickness of the sample
may be expressed as

E = k3P + E0 �8�

where k3 is a constant and E0 is the experimentally determined
initial Young’s modulus of the sample before laser exposure,
which in the presented example is 4.5 MPa. Equation �8� predicts
the modulus at any given point and time where the quantities I, P,
S, and E are dependent on position, x. Finally, the maximum at-
tainable value of Young’s modulus at any given location, x, within
the sample is fixed at Emax while Young’s modulus for the entire
sample is found by integrating Eq. �8� over the depth of the
sample.

From Eq. �6�, we assume that before exposure to the laser, P,
the concentration of the cross-linked product, is equal to 0. If we
then assume that the polymer used for the current study has a time
constant similar to that reported by Ikeda et al. �28� of 0.5 min,
then over 0.5 min dP should equal the initial concentration of
photo-active species U0. We then solve for k1 as

k1 =
1

0.5 � U0
�9�

From Eq. �7�, if we again assume sample conditions before light
exposure, I at x=0, the front face of the sample, is equal to I0 and
U is equal to U0. We then assume that the amount of optical
energy incident on the front surface of the sample is sufficient to
activate all of the available uncross-linked photo-active material,
thus S is also equal to U0. Then,

k2 = 1/I0 �10�

Finally, from Eq. �8� we assume that as time approaches infinity,
the Young’s modulus of the total sample, and at every position x
within the sample, should approach Emax. Also, all of the photo-
active species in the material should have undergone cross-
linking, resulting in P approaching U0. Then,

Fig. 8 First generation LASMP absorbance

Fig. 9 Time dependence of absorbance
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k3 =
Emax − E0

U0
�11�

As can be inferred from Eqs. �6�–�8�, k1 is related to the efficiency
at which the polymer mechanically cross-links given an accept-
able environment. An acceptable environment is associated with
the amount of optical energy available, the spatial location of
cross-linking polymer chains within the sample, as well as other
factors. k2 is representative of the polymer’s optical efficiency and
the degree to which available light is utilized for cross-linking
versus those transmitted, reflected, or absorbed as heat. The con-
stant k3 is then a measure of the effect cross-linking has on the
magnitude of the sample’s stiffness.

Finally, the value of Emax is varied until the resulting curve of
the total sample Young’s modulus versus time coincides with ex-
perimental data. Figure 10 illustrates the predicted time evolution
of the volume averaged stiffness as compared with the experi-
ment; corresponding to a theoretical value of Emax of 147 MPa.
Hence if cross-linking of every polymer chain within the sample
occurs, the resulting volume averaged Young’s modulus would be
147 MPa. As is displayed in the figure, the model prediction cor-
responds well with the experimental data.

Having an experimentally calibrated model, it is instructive to
analyze the through-thickness time evolution of other parameters,
such as the concentration of optically activated uncross-linked
species, S, and the through-thickness evolution of Young’s modu-
lus, E. Pictured in Fig. 11, before exposure to light, S is equal to
0 throughout the sample. After 1 min of exposure, the amount of
photo activated material forms a shape similar to that of the ex-
ponentially decaying transmitted optical power predicted by the
Beer–Lambert law, which is consistent with our assumptions in
deriving the equation governing k1 and k2. As time progresses, the
amount of photo activated species decreases as cross-linking
occurs.

Figure 12 illustrates the through-thickness evolution of Young’s
modulus for various laser exposure times, as predicted by the
presented model. The effect of the polymer’s ability to transmit
light, as expressed through the Beer–Lambert law, is clearly evi-
dent in the through-thickness distribution of Young’s modulus.
Such an observation leads to the realization that while the cross-
linking kinetic characteristics play a significant role in the transi-
tion time of LASMP, equally important is the ability of the poly-
mer to transmit sufficient amounts of light to enable through-
thickness cross-linking. Thus, goals of LASMP synthesis will
necessarily include optimization of both of these properties. Ap-
plication of an empirical modeling strategy, such as this one, en-
ables the assessment of the interplay between these important

properties in any given formulation. This information is critical in
mapping viable synthesis strategies leading to formulations with
increased penetration of property change, and also an increased
rate of this change. For instance an inspection of Figs. 11 and 12
together illustrates that even in the absence of an increased rate of
chemical kinetics �a conservative assumption�, increased transmit-
tance alone will result in deeper penetration of light at any given
moment in time, and therefore a larger increase in the volume
averaged stiffness at that moment in time; the result is an in-
creased rate of property change at the macroscopic level. Once the
interplay between chemical kinetics and transmittance has been
optimized for a given formulation family, creative light delivery
strategies, such as optical fiber or particle doping, may be em-
ployed to further enhance the rate and depth of property transition
in LASMP structural components.

5 Conclusions
LASMPs have the potential to rapidly and reversibly transition

between hard and soft modulus states separated by an order of
magnitude. Furthermore, application of a light stimulus offers sig-
nificant reduction in power requirements as compared with ther-
mally stimulated SMPs. These qualities make LASMPs attractive
for use in multifunction, load bearing adaptive structures. How-
ever, LASMP characterization to date has focused on thin films,

Fig. 10 Model prediction as compared with experimental data
Fig. 11 Predicted through-thickness evolution of photo acti-
vated uncross-linked species

Fig. 12 Predicted evolution of Young’s modulus through
sample thickness
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thereby neglecting the role of through-thickness property evolu-
tion. Consideration of through-thickness property evolution is es-
sential for meaningfully assessing and subsequently optimizing
the effectiveness of new LASMP formulations in terms of the
extent of property change, rate of property change, and power
requirements. This work proposes a standardized in situ method
for characterizing the temporal and spatial variations inherent in
both the stimulus and material transition. Furthermore, the pro-
posed methods enable a detailed consideration of the importance
of both the absorbance of the active photomonomer and the
through-thickness material transmittance. Application of such a
standardized characterization technique will ensure accurate and
comparable results across the field as well as aid in the develop-
ment of this new class of active polymers.
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Nomenclature
Es � Young’s modulus of the entire sample
�i � volume fraction of the individual bins
Ei � Young’s modulus of the individual bins

j � number of bins
A � absorbance
Io � intensity of the incident light
Ii � light intensity exiting the material
� � absorption coefficient
k � extinction coefficient
� � wavelength of the light
S � concentration of photo activated species
l � distance light travels through the material
x � position through sample thickness

E�x� � Young’s modulus at x position
t � time

I�x� � intensity of light at position x
P � concentration of the cross-linked product
U � concentration of photo-active species

k1, k2, k3 � constants
E0 � Young’s modulus in the soft state

Emax � Young’s modulus in the hard state
U0 � initial concentration of photo-active species

before transition
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A Nonlinear Rubber Material
Model Combining Fractional
Order Viscoelasticity and
Amplitude Dependent Effects
A nonlinear rubber material model is presented, where influences of frequency and dy-
namic amplitude are taken into account through fractional order viscoelasticity and
plasticity, respectively. The problem of simultaneously modeling elastic, viscoelastic, and
friction contributions is removed by additively splitting them. Due to the fractional order
representation mainly, the number of parameters of the model remains low, rendering an
easy fitting of the values from tests on material samples. The proposed model is imple-
mented in a general-purpose finite element (FE) code. Since commercial FE codes do not
contain any suitable constitutive model that represents the full dynamic behavior of
rubber compounds (including frequency and amplitude dependent effects), a simple ap-
proach is used based on the idea of adding stress contributions from simple constitutive
models: a mesh overlay technique, whose basic idea is to create a different FE model for
each material definition (fractional derivative viscoelastic and elastoplastic), all with
identical meshes but with different material definition, and sharing the same nodes.
Fractional-derivative viscoelasticity is implemented through user routines and the algo-
rithm for that purpose is described, while available von Mises’ elastoplastic models are
adopted to take rate-independent effects into account. Satisfactory results are obtained
when comparing the model results with tests carried out in two rubber bushings at a
frequency range up to 500 Hz, showing the ability of the material model to accurately
describe the complex dynamic behavior of carbon-black filled rubber compounds.
�DOI: 10.1115/1.2999454�

Keywords: rubber, dynamic stiffness, viscoelasticity, Fletcher–Gent effect, FE code, vi-
bration isolator

1 Introduction

Since in 1839 Charles Goodyear discovered that a material with
unique mechanical properties was produced by heating a mixture
of rubber, lead, and sulfur, rubber has played an important role in
many applications in the field of vibration isolation and noise
abatement. Its properties of viscoelasticity have resulted in a va-
riety of applications, ranging from bearings, springs, or seals to
shock absorbing bushings. When a source has to be connected to
a receiving structure, mounting it upon vibration isolators attains a
simple vibration transmission reduction. Rubber elements play
here an important role as they are designed to reduce transmissi-
bility while providing adequate dynamic behavior and stability.

Despite rubber being so common, deep knowledge of material
properties is quite often poor among design engineers. Insufficient
knowledge of transmission and damping properties of rubber
mounts requires industry to carry out costly experimental work for
optimizing the shape, location, and volume of these units. Without
the appropriate material knowledge, modeling of mounts is usu-
ally simplified by considering a single linear spring. Values used
in the design stage are estimated from quasistatic elastic charac-
teristics, and damping, if considered, is most of the times repre-
sented by a unique dashpot of arbitrary parameter. When vibration
isolation becomes an important issue in a specific design, a deeper

understanding of the dynamic behavior of rubber and of the mod-
eling techniques that help producing the final component is
needed.

Rubber compound frequently has carbon-black filler added,
consisting of very small carbon particles forming agglomerates
within the rubber material. Inclusion of filler increases the hard-
ness and damping of the material while resulting in nonlinear
characteristics. Dynamic properties of rubber, dependent on fre-
quency and temperature, develop amplitude dependent character-
istics, an effect known as Fletcher–Gent effect �1�. Jurado et al.
�2�, Medalia �3�, Sjöberg �4�, Dean et al. �5�, and Wang �6�, for
example, have conducted good reviews of the influence of strain
amplitude, frequency, and temperature on the mechanical rubber
characteristics based on experimental measurements. The work by
Wang also presents theories and observations about why the in-
clusion of filler alters the linear dynamic stress-strain response of
unfilled rubber compounds. Because of its nonlinear characteris-
tics, the prediction of the response of a rubber bushing to excita-
tion becomes a complex issue.

Nonlinear elasticity has been the characteristic receiving special
attention over the years, since the early 20th century �7–10� up to
present �11–14�. A convenient technique to include preload depen-
dence is to assume hyperelastic material behavior using strain
energy functions. Numerous variations of strain energy functions
are reported in literature �see Refs. �7–17�, for example�, where
Mooney–Rivlin, Arruda–Boyce, Ogden, and Yeoh forms are the
most popular ones.

The frequency dependence of the material is usually repre-
sented by viscoelastic models. The most popular model is the
Kelvin–Voigt model, where a viscous dashpot is coupled in par-
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allel to an elastic frequency independent spring. Nevertheless, this
model cannot be tuned except for a very small frequency range, as
it either overestimates at higher frequencies or underestimates at
the lowest frequencies the loss factor of the dynamic stiffness
�18�. Better description of material behavior can be obtained by
adding a spring in series with the dashpot �known as a Maxwell
chain� and increasing the number of Maxwell chains in the model
�18–21�. For a full multiaxial case, linear viscoelastic constitutive
equations are usually formulated in terms of hereditary or convo-
lution integrals. The most interesting such models have been pro-
posed by Lubliner �22�, Johnson et al. �23,24�, Yang et al. �25�,
and Simo �26�, whose model is also focused on the inclusion of
Mullins’ effect �27�.

As the models include more elements �springs and dashpots�,
the complexity and the number of parameters needed to accurately
describe material properties are highly increased �see discussion
in Ref. �18��, complicating the fitting of material constant values.
An alternative method to obtain good description of viscoelastic
material’s frequency dependence while reducing drastically the
required number of parameters is by using constitutive relations
that include derivatives of noninteger order, known as fractional
order derivatives. Although the mathematical history of fractional
order derivatives goes back to the 17th century �28�, its use in the
field of linear viscoelasticty became known with Bagley and Tor-
vik in the 1980s �29�. Since then numerous authors conducted
research on fractional order derivative viscoelasticity and success-
fully included it in their applications connected to rubber mounts,
e.g., Refs. �30–38�.

Fractional-derivative viscoelastic models are suitable to be used
in a structural dynamic analysis and may be implemented in a
general-purpose finite element �FE� code. Time domain formula-
tions are given by, e.g., Padovan �39�, Enelund et al. �40�, Zhang
and Shimizu �41�, and Schmidt and Gaul �42�. Equations of mo-
tion are usually solved using Grünwald’s algorithm �40,41�.

Viscoelastic models are all linear, meaning that they do not
account for amplitude dependence. While interesting due to their
reduced number of material parameters, the main drawback of the
above mentioned material models �39–42� is that they are only
suitable for lightly filled rubbers with negligible amplitude depen-
dent characteristics. However, as the amount of carbon-black filler
increases in the mixture, a good model for the amplitude depen-
dence might be equally important as a proper frequency descrip-
tion. One approach involves working with nonlinear viscous
damping forces �43–46�. Nevertheless, the Fletcher–Gent effect is
usually denoted as plastic effect �47�. It can be attributed to irre-
versible slip processes between the filler particles and their plastic
deformations �48�. This has motivated the characterization of am-
plitude dependent effects through friction elements, which is the
idea behind Gregory �49� or Austrell �50� models, where several
friction chains involving Coulomb friction elements are connected
in parallel to obtain good results. In the latter work, implementa-
tion in a general-purpose finite element code is done making use
of the von Mises elastoplasticity already available in the FE
codes.

In this paper, we develop a rubber material model that considers
both frequency and friction characteristics and that can be imple-
mented in a commercial FE code. The model is an extension of
Enelund’s one �40� incorporating the amplitude dependent behav-
ior of carbon-black filled rubber, ignored there. Friction effects are
implemented through Coulomb friction elements.

The inclusion of friction effects in the material model makes it
suitable to predict the dynamic behavior of bushings under work-
ing conditions, where applied displacements do not have to be
known in advance. The development of a model that includes
frequency and amplitude dependencies allows predicting an accu-
rate response of a system in the moderate frequency range where
various amplitudes are often found. Furthermore, its implementa-
tion in a finite element code provides a powerful tool for the
design of isolators: The dynamic frequency and amplitude depen-

dent dynamic stiffness can be estimated without having to physi-
cally produce the mount, avoiding the “trial and error” method so
common in the rubber industry. Finally, due to the implementation
of fractional order viscoelasticity, the number of parameters re-
mains lower than in other models adopting classical viscoelastic-
ity �50� and rendering an easier fitting of their values from tests
conducted on material samples. This is another clear advantage
that speeds the process of predicting the dynamic stiffness of rub-
ber elements in a desired frequency and amplitude range.

2 Material Testing
Because rubbers are not perfectly elastic, the strain during cy-

clic �harmonic� deformation always lags slightly behind the stress.
Therefore, the application of a sinusoidal strain will result in a
stress of the same frequency but shifted an amount termed loss
angle. It is very convenient to consider both the elastic in phase
response and the out of phase response, in terms of two moduli.
The overall response can then be expressed as a complex modulus
�Eq. �1��:

G� = Gstor + iGloss = Gstor�1 + i tan �� �1�

Gstor represents the in phase storage modulus, Gloss represents the
out of phase loss modulus, and i=�−1. The phase or loss angle �
is given by tan �=Gloss /Gstor. The ratio Gloss /Gstor is usually de-
noted as the loss factor �. The loss angle provides a measure of
the damping or hysteretical energy losses within the rubber sub-
jected to cyclic deformation.

Both the magnitude ��G��=�Gstor
2 +Gloss

2 � and the loss angle of
natural rubber compounds generally depend on temperature, fre-
quency, and dynamic strain amplitude. To accurately characterize
the dynamic behavior of a mixture, its shear modulus and its
dependencies of the above parameters have to be measured.

Following the guide edited by the ASTM �51�, which is focused
on describing various procedures for determining the dynamic
properties of vulcanized rubber materials, a forced nonresonant
simple shear test has been conducted using the specimen shown in
Fig. 1. Measurement results will be used to fit the material model
described in this paper.

Four different natural rubber mixtures have been investigated,
with various amounts and types of carbon-black and thus showing
different hardness. The mixtures are named after their hardness,
from Shore A 40 to Shore A 70 �approximately�. Four specimens
of each compound are measured, to ensure the repeatability of the
results. Furthermore, the samples have been mechanically condi-
tioned to account for Mullins’ effect �27�, meaning that three or
four previous cycles have been applied before recording the mea-
surement to avoid further stress softening due to cyclic loading.

Fig. 1 Simple shear specimen
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Experimental tests have been carried out at Seat Centro Técnico
in a Schenck, hydropulse High-Frequency Testing Machine VHF
7. In the test with simple shear specimens, the frequency range
covers 0–500 Hz and the peak amplitude range varies between
0.01 mm and 0.2 mm. Applied maximum strain level is suffi-
ciently small to ensure a simple shear deformation. In what fol-
lows, the influence of frequency and dynamic strain amplitude on
the complex shear modulus are presented briefly.

The magnitude of shear modulus as a function of frequency is
shown in Fig. 2. In the region of interest, the influence of fre-
quency is slight, although an increase of the value is observed as
the mixture is more heavily filled. Similar pattern might be ob-
served for the loss angle, with heavily filled mixtures exhibiting
higher loss angles than unfilled ones.

The dependence of the magnitude and loss angle of shear
modulus with the dynamic strain amplitude might be seen in Figs.
3 and 4. Natural rubber compounds display larger dynamic modu-
lus at small amplitudes than at larger dynamic strain amplitudes.
The effect is more pronounced as the amount of fillers is increased
in the compound, so that unfilled rubbers could be considered not
dependent on amplitude at all. The main reason of this effect is
believed to be the breakdown of interactions within the filler and
between the filler and the rubber matrix �52�.

3 Description of the Material Model Proposed
The mechanical analogy to the material model adopted is pre-

sented in Fig. 5. It combines a fractional order Zener model, de-
scribed later in Sec. 3.1, with a number of N friction chains in
parallel, yielding a model that sums elastic, viscous, and friction
stresses:

�total = �elastic + �FD + �
k=1

N

�friction,k �2�

In Eq. �2�, �elastic+�FD represents the stress on the fractional-
derivative Zener model and �friction,k represents the stress over the
kth friction chain.

The model in Fig. 5 is an extension of that proposed by
Enelund et al. �40� by incorporating the amplitude dependent
characteristics of the material. Friction Maxwell chains are se-
lected to represent the rate-independent part of the model. Note
that several friction chains are needed to get smooth hysteretic
loops, similar to the measured ones. Note also that linear elasticity
is defined in the model due to the constant parameter for the
elastic spring. Therefore, the S-shaped hysteresis loops that appear
at very high excitation amplitudes are not considered by the
model. It is suggested that the model includes nonlinear elasticity
to be completely general, which means that the spring should
follow a hyperelastic law �21,36,50�.

The material model proposed herein and described in more de-
tails below makes the most of Enelund’s �40� proposal, that is, its
ability to provide an accurate description of frequency dependent
characteristics of vulcanized rubbers with a low number of param-
eters, while the inclusion of friction chains extends its use to
characterize carbon-black filled rubbers where amplitude depen-
dent behavior is not negligible. The result is an easy to fit nonlin-
ear material model that accounts for both frequency and amplitude
effects of rubber, making it extremely straightforward to predict
the dynamic stiffness of rubber isolators in working conditions,
where various amplitudes may be found in a frequency range.

Fig. 2 Magnitude of shear modulus „MPa… as a function of fre-
quency. Dynamic strain amplitude of 0.02 mm. Room tempera-
ture „23°C….

Fig. 3 Magnitude of shear modulus „MPa… as a function of dy-
namic strain amplitude. Frequency of 102 Hz. Room tempera-
ture „23°C….

Fig. 4 Loss angle of shear modulus „deg… as a function of
dynamic strain amplitude. Frequency of 102 Hz. Room tempera-
ture „23°C….

Fig. 5 Mechanical analogy of the non-linear material model
adopted
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A short description of the different parts of this mechanical
model is given below.

3.1 Fractional-Derivative Zener Model. The basis of
fractional-derivative technique for linear viscoelasticity is to use
constitutive equations �similar to those given by the simple vis-
coelastic models� including time derivatives of noninteger order,
known as fractional derivatives. Dashpot elements on classical
viscoelastic models are replaced by pot elements �see Fig. 5�,
rendering a stress that is proportional to the time derivative of
fractional order of the strain.

Elastic and viscous stresses in the nonlinear model adopted are
represented through the fractional-derivative Zener model, which
combines a linear spring of constant Ge in parallel with another
spring of constant GFD and a pot of constants b and � �the order of
derivatives�. Modeling of viscoelasticity normally results in the
order of the time derivative �� �0,1�. When the model in Fig. 5 is
subjected to a shear strain �, the stress over the elastic and viscous
chains lead to a value:

�FD Zener = �elastic + �FD = Ge� + GFD�� − �FD
v � �3�

where �FD
v in Eq. �3� represents the strain over the pot element in

the fractional-derivative chain. Its value is obtained through the
resolution of the following equation:

D���FD
v � =

GFD

b
�� − �FD

v � �4�

where D��·� operator stands for the �-order fractional derivative.
Probably the most common definition of a fractional derivative

is through the Riemann–Liouville convolution integral �28�. For
�� �0,1�, it reads

D��f�t�� =
1

��1 − ��
d

dt�0

t
f���

�t − ���d� , � � �0,1� �5�

Equation �5�, in general, cannot be solved analytically for �FD
v

in Eq. �4� and the fractional derivative has to be numerically
evaluated. A suitable truncation of Grünwalds algorithm of
differential-integration allows evaluating fractional derivatives in
time domain �28�:

D��f�t�� = lim
n→�

�t/n�−�

��− ���j=0

n−1
��j − ��
��j + 1�

f	t −
jt

n

 �6�

By simply omitting the n→� operation and letting t=n�t, �t
being the time increment, Eq. �6� provides the value of the frac-
tional derivative of function f�t� at time n�t. At time t= �n
+1��t,

D��n+1f� =
1

��t���
j=0

n

cj���n+1−j f �7�

where nf represents the value of fractional derivative of function
f�t� at time n�t. Coefficients cj��� are given by Eq. �8�, by the
recursion formula for the gamma function:

c0��� = 1, c1��� = 1,

cj��� =
��j − ��

��− ����j + 1�
=

j − 1 − �

j
cj−1��� �8�

The definition of fractional derivative �Eq. �5�� is greatly sim-
plified when applying the Fourier transform to it. The Fourier
transform of the fractional derivative of order � of f�t� results in
�i	�� times the Fourier transform of f�t� �21�:

�
−�

�

�D��f�t���e−i	tdt = �i	���
−�

�

f�t�e−i	tdt = �i	�� f̂ �9�

In Eq. �9�, f̂ represents the Fourier transform of f�t�.
Applying Fourier transforms to Eqs. �3� and �4� leads to

�̂FD Zener = �̂	Ge +
GFDb�i	��

GFD + b�i	��
 → G� = Ge +
GFDb�i	��

GFD + b�i	��

�10�
The magnitude and loss factor of the complex shear modulus

according to Eq. �10� are represented in Fig. 6. Variation of the
order of the time derivative � in the �0,1� range leads to different
responses of the model in the frequency domain, making it very
promising to represent frequency dependent characteristics with a
low number of parameters. The classical viscoelastic Zener model
��=1 in the previous definitions� is not able to reproduce accu-
rately measured characteristics of the material, especially the loss
factor �see experimental results for natural rubber compounds in
Sec. 2�.

3.2 Friction Chains. The presence of filler in rubber com-
pounds distorts the hysteresis loop: filled rubbers develop
parallelogram-shaped hysteresis loops, instead of elliptical ones
characteristic of lightly filled rubber compounds. This rate-
independent response of the material is modeled through chains
composed of a Coulomb friction element connected in series to a
spring, a model known as a friction Maxwell model.

When the model in Fig. 5 is subjected to a shear strain �, the
stress over a friction chain is given by

�friction,k = Gfk� while �friction,k 
 Tfk

�friction,k = Tfk while �friction,k � Tfk �11�
The rate-independent damping in a friction chain is fully devel-

oped when the stress in the component reaches Tfk. While the
stress in the chain is less than Tfk, the two blocks in the Coulomb
element are fixed together and a linear response is given by the
spring �see Fig. 7�. Once the maximum stress level Tfk is achieved
sliding in the Coulomb element occurs. Equation �11� might be
rewritten as Eq. �12�, where � fk=Tfk /Gfk denotes the strain level
at which sliding occurs.

�friction,k = Gfk� while � 
 � fk = Tfk/Gfk

�friction,k = Tfk while � � � fk = Tfk/Gfk �12�

Fig. 6 Frequency dependent complex shear modulus provided by frac-
tional order Zener modulus for different values of �
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The addition of several friction Maxwell chains in parallel re-
sults in a smoother stress/strain curve or hysteresis loop than that
shown in Fig. 7, which is closer to measured characteristics of
rubber mixtures.

4 Implementation of the Model in a FE Code

4.1 The Overlay Technique. Since the commercial FE codes
do not contain any suitable constitutive model that represents the
full dynamic behavior of rubber compounds �including frequency
and amplitude dependent effects�, a simple approach is used based
on the idea of adding stress contributions from simple constitutive
models: An overlay technique. This fraction model was originally
proposed by Besseling �53� and has successfully been used by
Austrell et al. �50�. Its basic idea is to create a different FE model
for each material definition �fractional derivative viscoelastic and
friction�, all with identical meshes but with different material defi-
nitions, and sharing the same nodes. The results obtained would
be the equivalent to those of the mechanical model in Fig. 5 with
elastic, viscoelastic, and friction models in parallel, as displace-
ments �or strains� are maintained the same, and forces �or stresses�
are summed up.

A generalization of the one-dimensional constitutive model rep-
resented in Eq. �2� to the multiaxial state would be to add the
stress tensors:

�total = �elastic + �FD + �friction �13�

4.2 Implementation of Fractional-Derivative Visco-
elasticity. In a multiaxial stress/strain system and decomposing
stress and strain tensors in their volumetric and deviatoric parts
��vol and �dev for the stress and vol and �dev for the strain�, Eqs.
�3� and �4� become

�vol = �e,vol + �FD,vol = 3Kevol + 3KFD�vol − FD,vol
v �

�dev = �e,dev + �FD,dev = 2Ge�dev + 2GFD��dev − �FD,dev
v � �14�

where �e,vol and �FD,vol represent the contributions of the elastic
and fractional order chains to the total volumetric stress, whereas
�e,dev and �FD,dev represent the contributions of the elastic and
fractional order chains to the total deviatoric stress. Similarly,
FD,vol

v and �FD,dev
v stand for the volumetric and deviatoric strains

over the pot element.

D�vol�FD,vol
v � =

GFD

bvol
�vol − FD,vol

v �

D�dev��FD,dev
v � =

GFD

bdev
��dev − �FD,dev

v � �15�

Note that the generalization of the uniaxial model in Fig. 5 to
the multiaxial stress/strain state results in eight parameters: Ke and
Ge �elastic chain�; KFD, GFD, �vol, �dev, bvol, and bdev �fractional-

derivative chain�.
Implementation in a commercial FE code requires Eq. �15� to

be numerically evaluated, both for the volumetric and deviatoric
parts. The algorithm created for the integration of the response is
based on the work by Enelund et al. �40�, applying the suitable
truncation of differ-integration in Eq. �6�. Therefore, considering
only the fractional derivative and volumetric part of the response
in Eqs. �14� and �15�:

D�vol�FD,vol
v � =

GFD

bvol
	�FD,vol

3KFD

 �16�

Applying the general midpoint rule to Eq. �16�,

D�vol�n+1FD,vol
v � =

GFD

bvol

1

3KFD
��n+1�FD,vol + �1 − ��n�FD,vol�

�17�

where n+1� � denotes the value of the function at time �n+1��t and
�� �0,1� shows the implicitness of the integration in standard
fashion, e.g., the classical midpoint rule is defined by �= 1

2 ,
whereas the backward Euler rule is defined by �=1. As for the
fractional derivative in Eq. �17�, Eq. �7� is recalled, giving

D�vol�FD,vol
v � =

1

��t��vol
�c0

n+1FD,vol
v − n̄FD,vol

v � �18�

where

n̄FD,vol
v = − �

j=1

n

cj��vol�
n+1−jFD,vol

v �19�

The term n̄FD,vol
v in Eq. �19� stores the complete history of the

viscous strain �see Sec. 3.1 and Eq. �8� for evaluation of the co-
efficients cj�.

Operating with Eqs. �17�–�19� leads to the numerical solution
for the updated dissipative stress:

n+1�FD,vol = n+1�FD,vol
vv + c0A��FD,vol

ve �20�

where

n+1�FD,vol
vv = A�GFD��t��vol

bvol
�� − 1� + c0�n�FD,vol

+ 3KFDA�c0
nFD,vol

v − n̄FD,vol
v � �21�

and

��FD,vol
ve = 3KFD�vol = 3KFD�n+1vol − nvol� �22�

The term A in Eqs. �20� and �21� is provided below:

A = �GFD��t��vol

bvol
� + c0�−1

�23�

The updated strains can now be calculated:

n+1FD,vol
v =

1

c0
�n̄FD,vol

v +
GFD��t��vol

bvol

1

KFD
��n+1�FD,vol

+ �1 − ��n�FD,vol�� �24�

Fig. 7 Rate-independent behavior of a unique Maxwell friction
chain

Fig. 8 Practical procedure to obtain the dynamic stiffness of
components
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A similar procedure might be applied for the deviatoric part in
expressions �14� and �15�, which would provide the final numeri-
cal solution for the deviatoric updated dissipative stress and strain.

n+1�FD,dev = n+1�FD,dev
vv + c0B��FD,dev

ve �25�
where

n+1�FD,dev
vv = B�GFD��t��dev

bdev
�� − 1� + c0�n�FD,dev

+ 2GFDB�c0
n�FD,dev

v − n�FD,dev
v � �26�

and

��FD,dev
ve = 2GFD��dev �27�

The term B in Eqs. �25� and �26� is defined by

B = �GFD��t��dev

bdev
� + c0�−1

�28�

Finally, the updated deviatoric strain is provided by

n+1�FD,dev
v =

1

c0
�n�FD,dev

v +
GFD��t��dev

bdev

1

2GFD
��n+1�FD,dev

+ �1 − ��n�FD,dev�� �29�

The above proposed algorithms might be incorporated to com-
mercial FE codes through user routines. �=1 in the algorithm is
described for implicit calculation, whereas �=0 is imposed for
explicit resolution. Note that numerical evaluation of fractional
derivatives requires a large portion of the strain history to be
stored and used in each increment of the calculation when updat-
ing the values of stress and strain. Material constants needed �Ke,
Ge, KFD, GFD, �vol, �dev, bvol, and bdev� must be provided to the
code. Sec. 5 summarizes the fitting procedure that leads to their
values.

4.3 Implementation of the Friction Part. Friction effects are
introduced in the model by using appropriate plasticity models
already implemented in the commercial FE codes. Although origi-
nally thought for metal plasticity, von Mises’ elastoplasticity
model shows good resemblance to the multiaxial behavior of the
models based on the Coulomb friction �described in Sec. 3.2�.

4.4 Practical Procedure to Determine the Dynamic
Stiffness. Due to the nonlinearities associated to the model, cal-
culations must be carried out in time domain and some postpro-
cessing is needed to evaluate the complex dynamic stiffness of a
component �see procedure in Fig. 8�.

At each frequency, a sinusoidal displacement of the required

amplitude is provided and force response is calculated. Dynamic
stiffness is evaluated at each frequency through the frequency
domain transfer function. A transfer function Hxy between an input
signal x �displacement� and an output signal y �force� is defined
by Eq. �30�, where Pxy and Pxx are the cross and autospectral
density functions, respectively.

Hxy =
Pxy

Pxx
�30�

Letting x be the displacement and y the force signals, the trans-
fer function in Eq. �30� represents the complex stiffness K� at the
given frequency. The modulus of the complex stiffness �K�� is
defined as the absolute value of the complex transfer function Hxy.
Loss angle is defined through the complex transfer function phase,
according to

�K�� = �Hxy�f�� �N/m�

Loss angle �K�� =
180

�
�Hxy�f�� �deg� �31�

Although nonlinear effects are present in the behavior of the
material, the above-mentioned effective linear representation is
used for the dynamic stiffness evaluation with very satisfactory
results, as shown in Sec. 5.

5 Prediction of the Dynamic Stiffness of Two Rubber
Bushings

5.1 Description of the Cases. The material model described
here and implemented in the FE code ABAQUS has been used to
predict the dynamic stiffness of the two rubber bushings shown in
Figs. 9 and 10. Simulations in ABAQUS have been compared to
experimental results in order to validate the accuracy of the
model.

Both silent-blocks are relatively small: 18 mm height, with an
inner radius of 7 mm and an outer one of 15 mm in the case of
bushing 1, and 24 mm height, with an inner radius of 7.5 mm and
an outer radius of 13.55 mm, for bushing 2. Bushing 1 is com-
pounded of Shore A 50 natural rubber, whereas bushing 2 is made
of Shore A 70 natural rubber. The bushings are compounded to-
gether with the outer and inner walls, thus guaranteeing that no
preload and residual stresses exist in the isolators prior to the

Table 1 Values of the material parameters for the Shore A 50 NR compound

Shore A 50 NR Parameters Values

Linear elasticity Ge Ge=6.926�105 Pa
Fractional derivative viscoelasticity GFD, �, b GFD=5.79�105 Pa; �=0.479; b=560�103 N s� /m2

Friction �von Mises’ elastoplasticity� Gf1, Tf1 Gf1=2.28�105 Pa; Tf1=6.84�103 Pa

Fig. 9 Bushing 1: cylindrical rubber bushing with two holes.
Shore A 50.

Fig. 10 Bushing 2: cylindrical rubber bushing. Shore A 70.

011009-6 / Vol. 76, JANUARY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dynamic excitation.
In both cases, the outer steel cylinder is fixed and a sinusoidal

displacement of 0.025 mm is imposed in the inner one in the axial
and radial directions.

As for the FE model, the number of elements is limited to
around 350 due to the available memory resources, as the calcu-
lation of fractional derivatives requires that the whole strain his-
tory of the material is stored at each element and increment during
the calculation. In all directions, existing symmetry conditions
have been applied in order to reduce as much as possible the
number of elements of the FE meshes.

5.2 Parameter Fitting Procedure. The values of the material
parameters of the model for Shore A 50 and Shore A 70 rubber
compounds tested in Sec. 2 are displayed in Tables 1 and 2. Rub-
ber has been considered incompressible, implying Poisson’s ratio
of almost 0,5. It has also been assumed that � and b take the same
value in the deviatoric and volumetric decompositions. The pre-
vious assumptions reduce the number of parameters of the model
to only 4 if no friction effects are introduced in it. Two more
parameters are added for each elastoplastic mesh added to the
material definition �according to the overlay technique in Sec.4.1�.
In order to maintain the number of parameters as low as possible,
which is one of the main advantages of the model proposed, the
number of friction meshes should be reduced to a minimum.

Shore A 50 NR mixture is not highly filled and the amplitude
dependence is small, as shown in Figs. 2 and 3, unlike Shore A 70
NR compound. A single elastoplastic mesh provides a very good
fitting of observed characteristics in the case of the softest rubber.

Nevertheless, three elastoplastic meshes have been necessary to
obtain a good fit to experimental results in the case of Shore A 70
NR mixture, increasing the number of parameters of the model up
to 10.

The fitting procedure can be seen as a minimization of the error
of the material model compared with experimental data. Its aim is,
thus, a material model with the same stiffness and damping �loss
angle� properties as tested rubber material for a given range of
frequencies and strain amplitudes. For this purpose, the relative
error function in Eq. �32� is proposed.

error = � �Gtest
� − Gnum

� �2

�Gtest
� �2

�32�

where Gtest
� represents the measured complex shear modulus of the

material and Gnum
� represents the evaluated complex dynamic

shear modulus.
When the error is minimized with regard to the model param-

eters, a best fit of the simulated complex stiffness to the measured
complex stiffness is obtained in a least squares sense. The error
function has to be evaluated repeatedly for all amplitudes and
frequencies where measurements have been made.

Note that the model does not include any damage effects asso-
ciated with Mullin’s effect �27�. This assumption is introduced by
the fact that the parameters of the model are fitted from tests
conducted on mechanically conditioned material samples �as
stated in Sec. 2�. Nevertheless, for many applications, such as
shock absorbers and vibration isolators, there is no limitation
since those mounts are normally conditioned in one way or an-
other.

5.3 Results and Discussion. Predicted dynamic stiffness of
bushings show good agreement to measured characteristics in ra-
dial and axial directions �see Figs. 11–14�. The radial direction
considered in Fig. 12 for bushing 1 corresponds to the softest
direction �in the direction of the holes according to Fig. 9�. The
perpendicular radial direction for bushing 1 is not shown here,
although the conclusions are similar to the rest of the results.

In all the cases, errors are below the limits usually accepted by
rubber manufacturers, which involve differences under 10% in the
modulus of the stiffness and 2.5 deg in loss angle. One of the most
important factors affecting the accuracy of the calculations might
be the number of elements of the meshes, which have been re-
duced so that the models could be solved in the finite element
code with the available memory. It is expected that mesh refine-
ments would produce better fit to experimental test results.

6 Concluding Remarks
Commercial FE codes provide designers with a tool that helps

predicting at a design stage, which is the effect in the final re-
sponse of changes carried out in the geometry of a bushing or the
type of rubber compound. Nevertheless, the accuracy of finite
element methods depends on the accuracy to which the elastic and

Table 2 Values of the parameters of the nonlinear model for the Shore A 70 NR compound

Shore A 70 NR Parameters Values

Linear elasticity Ge Ge=1.665�106 Pa
Fractional derivative viscoelasticity GFD, �, b GFD=7.99�106 Pa; �=0.382; b=8.25�104 N s� /m2

Friction �von Mises’ elastoplasticity�
Gf1, Tf1 Gf1=2.08�106 Pa; Tf1=5.06�104 Pa
Gf2, Tf2 Gf2=1.54�106 Pa; Tf2=1.23�104 Pa
Gf3, Tf3 Gf3=1.01�106 Pa; Tf3=2.12�103 Pa

Fig. 11 Axial stiffness of bushing 1. T: experimental test; N:
simulation in the FE code.

Fig. 12 Complex dynamic stiffness of bushing 1 in the softest
radial direction. T: experimental test; N: simulation in the FE
code.
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dynamic natures of the design material can be defined. Nowadays,
there are no material models in commercial FE codes that fully
represent the observed dynamic characteristics of rubber com-
pounds, including both frequency and amplitude dependent
effects.

The work carried out here proposes a material model that com-
bines elastoplasticity and fractional order viscoelasticity to repre-
sent the complex behavior of natural rubber mixtures. A
fractional-derivative viscoelastic model reproduces the frequency
dependent behavior of rubber while maintaining the number of
parameters low and, thus, simplifying the parameter fitting proce-
dure. The way to implement fractional order viscoelasticity in a
finite element code is summarized, making it easy to the user to
program its own user routine where necessary. A von Mises’ elas-
toplastic material model shows good resemblance to the rate-
independent behavior of rubber mixtures, when subjected to har-
monic excitation. Both material models are combined through an
overlay technique.

Two are the main advantages of the model proposed. The first
one, inherent to its definition, is its capability to simulate the
complex dynamic behavior of carbon-black filled rubber elements
using a FE code, when the units are subjected to different excita-
tion amplitudes in a frequency range. The nonlinear model ac-
counts for both frequency and amplitude dependent effects of rub-
ber and directly provides accurate estimation of the dynamic
stiffness of isolators. The second advantage is related to the lower
number of parameters needed to define the material behavior,
compared with those models where classical viscoelasticity is
adopted. Dynamic simple shear tests, conducted at different am-
plitude values in a frequency range, provide enough data to fit the
values of the material parameters.

Two rubber bushings have been investigated and simulation
results have been compared with experiments. The nonlinear
model presented provides an accurate description of the dynamic
behavior of a rubber isolator in time domain. Estimated dynamic
stiffness is also satisfactory, obtained mean error falling within the
dispersion in the manufacturing process itself, which exists nor-
mally between the two components having the same geometry and
identical material composition.
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Modeling and Analysis of
Cylindrical Nanoindentation
of Graphite
Graphite at the nanoscale is modeled as a material system consisting of a stack of
parallel plates buffered by an elastic material. While the plates represent individual
graphene sheets, the buffer material models the Van der Waals interaction between the
graphene sheets. As such, the loading on graphite at the nanoscale is characterized by
the membrane force, the bending moment, and the shear force in the graphene sheets.
Cylindrical nanoindentation of graphite is analyzed by applying a special boundary
element method that employs Green’s function for multilayers with platelike interfaces.
Because Green’s function satisfies the traction-free surface, the interfacial displacement
continuity and the interfacial traction discontinuity conditions, only the indentation sur-
face area where the boundary condition is altered, are numerically discretized. Numerical
results of cylindrical nanoindentation are presented. It is shown that the bending moment
and the shear force in the graphene sheets are concentrated around the edge of contact,
consistent with the singularities existing in the second and the third derivatives of the
surface displacement in the reduced case of a semi-infinite homogeneous solid under
cylindrical contact. Kinks of single, double, and triple joints are related to the bending
moment, the shear force, and the concentrated force, respectively.
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1 Introduction

Graphite has long been applied to develop nuclear shields and
composite materials among many other applications due to its
excellent thermal, electrical, and mechanical properties �1�. Most
recently, its building element, i.e., graphene sheet, in the form of
single or a few stacked layers, has been realized in laboratories
that have renewed and heightened great interest in the material at
the nanoscale �2–4�. Their unique 2D electronic and magnetic
properties may be utilized to develop novel nanodevices. Under-
standing of the mechanical behavior of graphene sheets and
graphite at the nanoscale is important.

Nanoindentation test was used to investigate the mechanical
behavior of graphite at small scales �5�. It was shown that a highly
oriented pyrolytic graphite �HOPG� sample may undergo signifi-
cant nonlinear elastic behavior. This elastic behavior was ex-
plained by the reversible incipient kink banding underneath the
indentation site �6�. The classical dislocation theory �7� was ap-
plied to quantitatively explain this phenomenon.

At the microscale and beyond, graphite can be adequately mod-
eled as a homogeneous continuum solid �1�. In contrast, at the
lattice level, it is a stack of graphene sheets of carbon atoms
covalently bonded within a basal plane but weakly bonded by Van
der Waals forces between the planes �1�. Thus, it displays itself at
the nanometer scale as a stack of plates buffered by a relatively
“soft” material. The plates represent the graphene sheets, while
the buffer material represents the Van der Waals bonding effect. In
this work, we develop such a continuum model to take into ac-
count the discrete-plate nanostructure of graphite and study the

loading conditions on individual graphene sheets in graphite under
nanoindentation. The two-phase continuum model stands between
the existing atomistic and homogeneous continuum models. It is
more efficient than the atomistic model and more accurate than
the homogeneous continuum model for simulation of the me-
chanical behavior of graphite at the nanoscale.

The rest of the paper is organized as follows. In Sec. 2, the
discrete-plate model of graphite at the nanoscale is described. In
Sec. 3, a special boundary element method is developed to solve
the problem of cylindrical nanoindentation of graphite. Because
the special Green’s function for multilayers with platelike inter-
faces �8� is employed that satisfies the surface and interfacial con-
ditions, only the surface contact area needs to be numerically
discretized. The loading fields in the plates modeling the graphene
sheets are acquired in the postprocess. In Sec. 4, numerical results
are presented and analyzed. In Sec. 5, kink banding in graphite
under nanoindentation is discussed. Finally, conclusions are
drawn in Sec. 6.

2 Discrete-Plate Model for Graphite at the Nanoscale
Graphite at the nanoscale is modeled as a stack of Kirchhoff

plates buffered by an elastic material, as schematically shown in
Fig. 1. While the plates represent the covalent interaction of car-
bon atoms within individual graphene sheets, the buffer material
does the relatively weak Van der Waals interaction between adja-
cent graphene sheets. The plates are assumed to be isotropic and
of the Kirchhoff type. The buffer material is transversely isotro-
pic.

The graphite modeled as a two-phase continuum requires two
sets of equilibrium equations: one for the plates and the other for
the buffer material. The set of equilibrium equations for stretching
and bending of a graphene sheet is given by �9�
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where u is the displacement, �p� is the traction discontinuity
across a graphene sheet, E denotes the membrane elastic con-
stants, and D is the flexural rigidity. The Cartesian reference frame
is attached with the x3-axis being normal to the basal plane.

The equilibrium equations for the 3D buffer material are given
by �10�

Cijkluk,lj + f i = 0 �2�

where Cijkl is the elastic stiffness matrix, f i is the body force
component, the prime in the subscript denotes the partial differ-
entiation with respect to the index that follows, and the repeated
indices indicate the Einstein convention of summation.

Very recently, Yang and Tewary �11� analytically showed that
the fundamental deflection behavior of a graphene lattice at the
long-wavelength limit is the same as that of a continuum Kirch-
hoff plate under a concentrated force. This correspondence estab-
lishes a rigorous linkage of the continuum parameter of a plate
with the discrete lattice parameters of graphene. They conse-
quently determined the flexural rigidity D of graphene lattice to be

D = 0.797 eV �3�
based on the Born von Karman model �12� and the Tersoff–
Brenner potential �13�.

The membrane elastic constants of graphene are defined by

E11 =
�2V

��11 � �11
, E22 =

�2V

��22 � �22

�4�

E12 = E21 =
�2V

��11 � �22
, E66 =

�2V

��12 � �12

where V is the interatomic potential and �11, �22, and �12 are the
in-plane strain components. By taking the Tersoff–Brenner poten-
tial �13�, the constants are given by �14�

E11 = E22 = 1.7731 keV/nm2

�5�
E12 = E21 = 0.73084 keV/nm2, E66 = 0.52116 keV/nm2

In contrast, little has been known about the elastic constants of
the buffer material representing the Van der Waals interaction. It is
partially due to the inadequate understanding of the Van der Waals
interaction that is much weaker than the covalent interaction in
graphite. In the present study, the out-of-plane elastic constants of

graphite are used for the buffer material. This is reasonable be-
cause the atom-thin graphene sheets should contribute very little
to these components of overall stiffness, C13, C33, and C44. These
out-of-plane components were found in Ref. �1�. Meanwhile, the
in-plane components C11 and C12 are derived from them by as-
suming that the buffer material is fully isotropic �rather than trans-
versely isotropic�. There is no way for us to estimate the error
caused by this assumption at the time being. It is hoped to affect
the present study insignificantly by considering the fact that the
contribution of the buffer layer to the in-plane elastic rigidity is
small compared to that of the graphene sheets. The former is only
about 4% of the latter. In summary, the elastic constants of the
buffer material are taken as

C11 = 0.2278 keV/nm3, C12 = 0.0936 keV/nm3

C13 = 0.0936 keV/nm3, C33 = 0.2278 keV/nm3 �6�

C44 = 0.0281 keV/nm3

Note that the second moment of inertia of one buffer layer with
elastic constants given above is about 0.7–0.8 eV, roughly the
same as that of a single graphene sheet.

The continuity conditions of displacement and traction are en-
forced at the interfaces between the plates and the buffer material.
Therefore, the graphite may be alternatively viewed as a material
system consisting of multiple buffer layers bonded through plate-
like interfaces, i.e., interfaces exhibiting finite membrane and flex-
ural rigidities. Equation �2� is the governing equation of the buffer
layers. Equation �1� is the interfacial traction jump condition. In
addition, the interfacial displacement continuity condition is en-
forced.

3 Boundary Element Method for Graphite Under
Nanoindentation

In order to predict the loading on individual graphene sheets in
a semi-infinite graphite sample under cylindrical nanoindentation,
as shown in Fig. 1, a novel boundary element method is devel-
oped. Green’s function for multilayers with platelike interfaces is
employed as the kernel. Green’s function that can analytically
account for the discrete-plate nanostructure of graphite was re-
cently derived in 3D �8�. Its 2D reduction, which is used in the
present study, is summarized in the Appendix. Since the special
Green’s function satisfies the interfacial displacement continuity
condition, the interfacial traction jump condition, and the free sur-
face condition, only the contact area on the surface where the
boundary condition is altered needs for numerical discretization.
The loading parameters in graphene sheets are calculated after the
indentation pressure is solved by using the boundary element
method.

Employing the special Green’s function for multilayers with
platelike interfaces �8�, the displacement at a point y in the graph-
ite �including the surface� can be expressed as

Fig. 1 Cylindrical nanoindentation of a graphite sample speci-
men modeled as a stack of buffered plates on top of a homo-
geneous graphite substrate
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up�X� =�
SI

Gpi�X,x�ti�x�dS�x� �7�

where Gpi�X ,x� is Green’s function, representing the ith compo-
nent of displacement at x due to a unit point force applied in the
pth direction at X, and t and SI are the pressure and contact area
on the surface, respectively. Note that the boundary integral equa-
tion of a regular solid, i.e., Somigliana’s identity �15�, consists of
two integral terms including the one given in Eq. �7�. The other
term, which is given by Green’s function of traction times dis-
placement, vanishes in the present case where the integral kernel
is identically equal to zero on the surface satisfying the traction-
free boundary condition �8�. Furthermore, since Green’s function
in Eq. �7� is derived with the point force directly applied on the
surface, no usual limiting process is necessary to take X from the
interior to the surface that would have led to a coefficient equal to
one-half in front of the displacement on the left-hand side of the
equation �15�.

Because the out-of-plane elastic constants of graphite are over
ten times smaller in magnitude than those of a common indenta-
tion tip material, which is either silicon or diamond, the indenter
is assumed to be rigid. In addition, the nonconformal contact
angle between the opposite contact surfaces is assumed to be
small. The contact is frictionless. The rigid indenter initially in
touch with the graphite surface is pressed with depth �. The in-
denter tip profile is described by a function h�x1�, which sets up a
rigid normal confinement to the sample surface deformation. The
tangential traction component is always equal to zero.

Based on the above integral-equation formulation, one can de-
vise an efficient numerical scheme to solve the problem of graph-
ite under nanoindentation. The �potential� contact area is dis-
cretized into constant elements each with a single node placed at
the middle point. The displacement and traction are uniform in
each element. The approximate fields are plugged into Eq. �7�,
which results in the following system of algebraic equations:

up
m = �

n

gpi
mnti

n �8�

where the superscripts m and n indicate nodes, and gmn is the
integral of Green’s function Gmn�ym ,x� in terms of x over the
element of node n.

Since the contact problem is nonlinear, an iterative scheme is
necessary to solve the system of equations �8�. The iterative
scheme of successive over-relaxation �16,17� is adopted, which is
summarized below. Let us define a residual function for each com-
ponent of a node

rp
m = up

m − �
n

gpi
mnti

n �9�

The initial nodal displacement is set to be �−h�x1�. Recall that �
is the indentation depth. It can be incrementally increased from
zero to simulate a continuous indentation test. During the iteration
process, the displacement components are updated by

�up
m�iterat+1 = �up

m�iterat − �rp
m �10�

where iterat indicates the iteration step, and � is a numerical pa-
rameter that one can adjust to obtain the best convergence rate of
the iteration process. If it happens that the normal component
�u3

m�iterat+1 exceeds the confining gap, i.e., �−h�x1�, this node
comes in contact with the rigid tip. In this case, the normal dis-
placement component is set to be

�u3
m�iterat+1 = � − h�x1

m� �11�

The corresponding normal traction component is calculated by

�t3
m�iterat+1 = �t3

m�iterat + �
r3

m

g33
mm �12�

Meanwhile, the tangential displacement components are calcu-
lated by

�u�
m�iterat+1 = �u�

m�iterat − �r�
m �13�

where � is equal to 1 or 2. It is found that this scheme is efficient
in solving the present contact problem. In later simulations, the
numerical parameter � is set to 0.7.

4 Numerical Results
In this section, numerical results are presented with a cylindri-

cal indentation tip of radius 100 nm and a contact half width
within 10 nm. The graphite specimen is modeled as a material
system consisting of 50 units of alternating buffer layers and
graphene sheets bonded on top of a bulk graphite substrate. There
is no graphene sheet placed on the top surface. The first graphene
sheet is at a depth of 0.335 nm. The number of discrete units was
found to be adequate for a smooth transition of fields across the
interface. Otherwise, more discrete units would have been used.
The elastic constants of the bulk graphite used are

C11 = 5.2928 keV/nm3, C12 = 2.1816 keV/nm3

C13 = 0.0936 keV/nm3, C33 = 0.2278 keV/nm3 �14�

C44 = 0.0281 keV/nm3

The out-of-plane components, C13, C33, and C44 are found in Ref.
�1�. The in-plane components, C11 and C12, are derived by divid-
ing the membrane elastic constants of a graphene sheet given in
Eq. �5� by the graphene-sheet spacing, 0.335 nm. A total of 200
elements were used to discretize the potential contact area of
width 20 nm on the top surface.

Before presenting the results, it may be worth mentioning that
the above formulation is applicable to general 3D cases. For the
present case of cylindrical nanoindentation, the deformation is
uniform along the cylindrical axis, which is taken to be the
x2-axis. Thus, all the field quantities are effectively functions of
variables x1 and x3, as shown in Fig. 1. The Green functions used
are correspondent to those described in the Appendix.

Results of a typical simulation with �=2 nm are first presented.
The contact half width a is about 7 nm. The total indentation force
is about 62 eV /nm2. Figure 2 shows the variation of the trans-
verse displacement component w �i.e., the deflection� along the
interfaces modeling the graphene sheets. Figures 3 and 4 show
variations of the second and the third derivatives of w with respect
to x1 along the interfaces, respectively. These derivatives are pro-

Fig. 2 Variation of transverse displacement on the surface and
along the graphene sheets under cylindrical nanoindentation
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portional to the bending moment M and the shear force Q by M
=−Dw,11 and Q=−Dw,111, respectively. The corresponding fields
on the surface are also included for comparison.

From Figs. 3 and 4, it can be seen that both the second and the
third derivatives of deflection, w,11 and w,111, exhibit singularities
at the edge of contact �EOC�. This is consistent with the analytical
solution of the surface displacement field in the case of a homo-
geneous substrate under cylindrical indentation �18�. The second
derivative w,11 is singular by the order of log��� outside the EOC,
where � is the distance from the EOC. The third derivative w,111 is
singular by the order of 1 /� on both sides of the EOC. Corre-
spondingly, both of the bending moment and the shear force in the
graphene sheets exhibit a high concentration of magnitude around
the EOC. The bending moment proportional to w,11 is concen-
trated outside of the EOC. The shear force proportional to w,111 is
concentrated on both sides of the EOC.

The maximum values of the �absolute� bending moment and
shear force, equivalently, w,11 and w,111, and their locations in
individual graphene sheets near the surface are estimated from
Figs. 3 and 4. The results are plotted in Figs. 5–7. The w,111
maxima are estimated on both sides of the EOC. The w,11 maxi-
mum is estimated outside the EOC as well as at the contact center.
The traces of w,11 and w,111 maxima across the stack of graphene
sheets are shown in Fig. 5. Variations of the w,11 and w,111
maxima with number of graphene sheets counted from the top
surface are shown in Figs. 6 and 7. It can be seen that the w,11 and
w,111 maxima both decay rapidly with depth from the surface.

Meanwhile, w,11 maximum underneath the center of contact
�COC� decreases slowly with depth. w,111 is concentrated in
greater magnitude inside than outside the contact zone. The trace
of absolute w,111 maximum is at an average angle roughly equal to
81 deg from the surface inside the contact zone. Meanwhile, the

Fig. 3 Variation of the second derivative of transverse dis-
placement on the surface and along the graphene sheets

Fig. 4 Variation of the third derivative of transverse displace-
ment on the surface and along the graphene sheets

Fig. 5 Traces of maximum w,11 and w,111 in individual
graphene sheets across the stack of graphene sheets. The
number of graphene sheets is counted from the top surface „0….

Fig. 6 Variation of maximum w,11 in individual graphene
sheets across the stack of graphene sheets

Fig. 7 Variation of maximum w,111 in individual graphene
sheets across the stack of graphene sheets
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trace of the w,11 maximum is at an average angle roughly equal to
73 deg from the surface outside the contact zone.

A series of simulations with various loading magnitudes were
carried out. They show the same characteristic behavior of the
graphene sheets. From the series of simulations, the contact half
width a and total indentation force P are recorded. The maximum
absolute values of w,11 and w,111 in the first graphene sheet are
also recorded. Variation of P with a is plotted in Fig. 8. Variations
of w,11 and w,111 maxima in the first graphene sheet with P are
plotted in Figs. 9 and 10. A power-law curve fitted to the data
points in Fig. 8 shows an exponent of 2, the same as the case of a
homogeneous substrate under cylindrical contact �18�.

5 Discussions
One of the failure mechanisms in ductile plates is kinking

�7,19�. The kinks may initiate in one plate and propagate in a
narrow band across a stack of plates held together by high pres-
sure. This theory of kink banding has been adopted to explain the
nonlinear elastic behavior observed in graphite under nanoinden-
tation �5,6�. The classical dislocation theory �7� was applied. In
the following, we characterize the phenomenon within the discrete
plate theory.

Three types of kink may occur in the case of a stack of buffered
plates under indentation, depending on the number of joints in-
volved, as schematically shown in Figs. 11�a�–11�c�. Figure 11�a�
shows a single-joint kink. It is characterized by an abrupt change
of slope, and thus operated by excessive bending moment. Figure
11�b� shows a double-joint kink. It consists of a couple of oppo-

site single-joint kinks close to each other. Overall it is character-
ized by an abrupt change in deflection, and thus operated by ex-
cessive shear force. Figure 11�c� shows a triple-joint kink. This
may be the case when treating all the kinks underneath an indenter
as a single event. Thus, it is operated by a concentrated force
applied on the surface. The three types of a kink are discontinui-
ties at various orders, characterized by w,11, w,111, and w,1111, and
driven by the bending moment, the shear force and the concen-
trated body force, respectively.

Based on the previous simulations, it can be seen that all of the
three aforementioned types of a kink may occur in graphite under
nanoindentation. Near the contact edge, single- and the double-
joint kinks may occur since the bending moment and the shear
force are both highly concentrated. Underneath the center of con-
tact, a single-joint kink may occur if the indenter tip radius is
sufficiently small. It would add to the kinks at the EOC forming a
triple-joint kink. Upon initiation, the near-singular fields at the
EOC may drive the single- and double-joint kinks to propagate
across the stack of graphene sheets in a narrow band, i.e., kink
banding. The angle of the kink band would be roughly 81 deg
from the surface inside the contact zone if it is a double-joint kink
and is operated by the shear force. If it is a single-joint kink and is
operated by the bending moment, it would be roughly 73 deg from
the surface outside the contact zone, as suggested by the simula-
tions presented in Sec. 4.

The exponent of 2 in the power-law curve fitted to the total
indentation force P versus contact half width a as shown in Fig. 8
indicates that the overall behavior of graphite under nanoindenta-
tion at a contact width of several nanometers can be well de-
scribed within a homogeneous elasticity model. However, in order
to predict the detailed deformation field in the vicinity of EOC at
the nanometer scale, as shown in Figs. 9 and 10, an advanced
model like the present one that can resolve the discrete-plate
nanostructure is needed. This detailed deformation field is neces-

Fig. 8 Variation of total indentation force P with contact half
width a

Fig. 9 Variation of maximum w,11 at the EOC with contact half
width a

Fig. 10 Variation of maximum w,111 at the EOC with contact
half width a

Fig. 11 „a… Bending moment-controlled single-joint kink, „b…
shear force-controlled double-joint kink, and „c… concentrated
load-controlled triple-joint kink
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sary in order to explain the nanoscale damage processes. The
model must be capable of accurately predicting the responsible
loading parameters.

In order to fully understand the damage mechanisms in graphite
and materials alike �20�, a combined experimental and computa-
tional study is indispensable. The present study with quantitative
prediction of loading parameters on individual graphene sheets
may provide insights and guidance to future experimentation. Fur-
ther studies are needed to understand the effects of various param-
eters, such as indenter tip geometry including wedge, spherical
and Berkovich tips, etc., finite plate deformation, and progressive
damage in various forms.

6 Conclusions
A novel two-phase continuum model has been developed for

graphite at the nanoscale. It is modeled as a stack of buffered
plates. While the plates represent the graphene sheets of strong
covalent bonding, the buffer material models the relatively weak
Van der Waals interaction between the graphene sheets. Further-
more, an efficient and accurate boundary element method has
been developed to analyze the discrete-plate nanostructure under
cylindrical indentation. Because the special Green’s function for
multilayers with platelike interfaces is employed, only the contact
area on the surface where the boundary condition is altered needs
to be numerically discretized. The long-range behavior of an infi-
nite plate, which is normally troublesome to a numerical method,
is analytically taken into account. The fields of bending moment
and shear force in the graphene sheets have been examined. They
exhibit high concentrations at the EOC. These concentrated fields
are suggested to predict the initiation and the subsequent banding
of single-and double-joint kinks at the EOC, whichever to occur
in the reality remains unclear. The discrete-plate theory of graph-
ite is suggested to better explain the kinking phenomenon ob-
served in graphite than the conventional homogeneous elasticity
theory.
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Appendix
The Green’s function for multilayers with platelike interfaces

has been derived in 3D �8�. The generalized Stroh formalism and
2D Fourier transformation were applied. In the following, the
derivation is summarized, and the 2D reduction is described.

1 3D Green’s Function for Multilayers With Platelike
Interfaces. The following 2D Fourier transformation is applied to
a field quantity, e.g., the displacement �i.e., the 3D Green’s func-
tion�,

ũ�y1,y2;X,x3� =�
−�

� �
−�

�

G�3D��X,x�eix�y�dx1dx2 �A1�

where e stands for the exponential function, and i in the exponent
denotes −1. This transformation turns the 3D governing Eq. �2�
�with the body force being a unit point force applied at X� into a
1D ordinary differential equation, given by

Ci3k3ũk,33 − i�Ci�k3 + Ci3k��y�ũk,3 − Ci�k�y�y�ũk = − f ie
iX�y���x3

− X3� , �A2�

where � is the Dirac delta.
Solving the above Eq. �A2� and applying the solution to each

layer result in

ũm�y1,y2;X,x3� = eiy�X��ũm
����y1,y2;x3 − X3�

+ i�−1�Am�e−ip̄m��x3−hm−1��Vm

+ Am�e−ipm��x3−hm��Wm�� �A3�

The subscript m indicates the quantities are associated to the mth
layer where the field point x resides. ũm

���, a seed solution, is taken
to be the infinite-space Green’s function. Vm and Wm are a pair of
unknown functions to be determined by the boundary and interfa-
cial conditions. In addition, the overbar denotes the complex con-
jugate, �� ,	� are the polar coordinates corresponding to �y1 ,y2�
by y1=� cos 	 and y2=� sin 	. p and A as functions of 	 and Cijkl
are the eigenvalues and eigenvectors of the generalized Stroh
eigenproblem �10�, and

�e−ip�x3� � diag�e−ip1�x3,e−ip2�x3,e−ip3�x3� . �A4�
By applying the constitutive law of the elastic layer material,

the transform-domain in-plane and out-of-plane stress compo-
nents, s̃��
̃I11, 
̃I12, 
̃I22� and t̃��
̃I13, 
̃I23, 
̃I33�, respectively,
can be derived from the Green’s function in Eq. �A3� as

t̃m�y1,y2;X,x3� = eiy�X��t̃m
����y1,y2;x3 − X3� + �Bm�e−ip̄m��x3−hm−1��Vm

+ Bm�e−ipm��x3−hm��Wm�� �A5�

s̃m�y1,y2;X,x3� = eiy�X��s̃m
����y1,y2;x3 − X3� + �Cm�e−ip̄m��x3−hm−1��Vm

+ Cm�e−ipm��x3−hm��Wm�� �A6�

where t̃m
��� and s̃m

��� are derived from ũm
��� in the same way as t̃m

and s̃m from ũm, and matrix B and C are derived from A and p.
Note that the matrix C here is different from the fourth-rank elas-
tic stiffness tensor Cijkl as well as its reduced matrix form.

The infinite-space Green’s functions of displacement and stress
are given by

ũ����y1,y2;x3 − X3�

= �i�−1A�e−ip��x3−X3��A−1�M − M�−1, x3 � X3

i�−1A�e−ip̄��x3−X3��A−1�M − M�−1, x3 � X3
� �A7a�

t̃����y1,y2;x3 − X3� = �B�e−ip��x3−X3��A−1�M − M�−1, x3 � X3

B�e−ip̄��x3−X3��A−1�M − M�−1, x3 � X3
�

�A7b�

s̃����y1,y2;x3 − X3� = �C�e−ip��x3−X3��A−1�M − M�−1, x3 � X3

C�e−ip̄��x3−X3��A−1�M − M�−1, x3 � X3
�

�A7c�

where M=BA−1

The traction-free boundary condition on the top surface, the
interfacial displacement continuity condition and the interfacial
traction discontinuity condition in the transform domain are given
by

t̃1 = 0 at x3 = 0 �A8a�

ũm = ũm+1 at x3 = hm �A8b�

��̃m+1 − �̃m�n = Ãmũm at x3 = hm �A8c�

with

Ã = � E11y1
2 + E66y2

2 �E12 + E66�y1y2 0

�E21 + E66�y1y2 E66y1
2 + E22y2

2 0

0 0 D�y1
4 + 2y1

2y2
2 + y2

4�
�
�A9�

Imposition of the above conditions would result in a linear system
of algebraic equations. Solving it, one may obtain the unknown
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quantities Vm and Wm for all layers. This completes the solution of
the Green’s function for multilayers with platelike interfaces in
the transform domain.

The physical-domain Green’s function is obtained by applying
the Fourier inverse transformation

G�3D��X,x� =
1

�2�2�
−�

� �
−�

�

ũ�y1,y2;X,x3�e−iy�x�dy1dy2

�A10�

2 2D Green’s Function Due to a Line Force. The above
Green’s function is derived with a point force in the 3D space. In
the case of a line force distributed along the x2 axis in parallel to
the interfaces, the corresponding 2D Green’s function is given by

G�2D��X,x� =�
−�

�

G�3D��X,x�dX2 �A11�

where the 3D Green’s function is derived above. Substituting Eq.
�A10� in Eq. �A11� results in

G�2D��X,x� =
1

�2�2�
−�

� �
−�

�

ũ��y1,y2;X3,x3�e−iy1�x1−X1�

��
−�

�

e−iy2�x2−X2�dX2dy1dy2 �A12�

where ũ� is the function ũ divided by eiy�X� in Eq. �A3�, and both
X and x on the left-hand side effectively take components in 1 and
3 in this 2D case.

The following identity is applied to the inner integration over
X2 in Eq. �A12�,

�
−�

�

e−is�ds = 2��s� . �A13�

Further carrying out the integration involving the Dirac delta
function � results in

G�2D��X,x� =
1

2
�

−�

�

ũ��y1,y2 = 0;X3,x3�e−iy1�x1−X1�dy1

�A14�

Therefore, the 2D Green’s function due to a line force is given in
a 1D integral, while the 3D Green’s function due to a point force
is given in a 2D integral.

For the boundary element application, a line integral of the
Green’s function over an element is needed; see Eq. �8�. Examin-

ing Eqs. �A3� and �A14�, one may realize that the line integral
over the physical element can be analytically carried out before
the numerical integration over y1. For detail of this technique, one
may refer to Ref. �21�.
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Wrinkling of a Fiber-Reinforced
Membrane
In this paper we investigate the response of fiber-reinforced cylindrical membranes sub-
ject to axisymmetric deformations. The membrane is considered as an incompressible
material, and the phenomenon of wrinkling is taken into account by means of the relaxed
energy function. Two cases are considered: transversely isotropic membranes, character-
ized by one family of fibers oriented in one direction, and orthotropic membranes, char-
acterized by two family of fibers oriented in orthogonal directions. The strain-energy
function is considered as the sum of two terms: The first term is associated with the
isotropic properties of the base material, and the second term is used to introduce trans-
verse isotropy or orthotropy in the mechanical response. We determine the mechanical
response of the membrane as a function of fiber orientations for given boundary condi-
tions. The objective is to find possible fiber orientations that make the membrane as stiff
as possible for the given boundary conditions. Specifically, it is shown that for trans-
versely isotropic membranes a unique fiber orientation exists, which does not affect the
mechanical response, i.e., the overall behavior is identical to a nonreinforced membrane.
�DOI: 10.1115/1.2967888�

1 Introduction
The importance of mechanical properties of elastic membranes

is nowhere more evident than in nature where the study of mor-
phology identifies cylindrically shaped membranes as the pre-
dominant structural configuration in plants and animals �1�. In
biological organisms, examples of cylindrically shaped soft mem-
branes are found in snakes, worms, caterpillars, guts, arteries, and
seaweeds. Arbitrary shaped elastic membranes enclose, for ex-
ample, living cells and the human body �2,3�. Thin-walled cylin-
drically shaped tubes are ideal to support internal pressure, since
they have high flexural and torsional stiffnesses and represent the
most economical use of available material. In engineering appli-
cations, membranes were first used as sails to harvest the force of
wind and as tents to protect against the environment. More re-
cently, due to their low weight, high stiffness-to-weight ratio, and
ease of stowing and deploying, membranes have seen many ap-
plications in the space program. Unfortunately, unlike other struc-
tures such as plates or shells, membranes cannot withstand com-
pression, so they respond by folding and wrinkling. Because
wrinkling affects both the static and dynamic characteristics of
membranes, the phenomenon of wrinkling needs to be accounted
for in any analysis of membranes. For example, Burton and Taylor
�4� and Harris et al. �5� showed how the mechanics of wrinkling
provides insight into living cell locomotion. Stafford et al. �6�
developed an effective technique for measuring the elastic moduli
of polymeric thin films based on the critical wavelength of
wrinkles.

A detailed review of wrinkling theories up to 1996 is given in
the review paper by Jenkins �7�. In 1929, Wagner �8� introduced
the ideas of wrinkling and the tension-field theory in connection
with flexible shear panels used in airplane construction. When a
thin panel is under shear in post-buckling state, the load is trans-
mitted primarily along one of the principal axes of stress, while
bending effects remain secondary. The panel deforms into a wavy
or wrinkly surface, where the wrinkles align with the direction of
the tensile stress. Wagner �8� developed the tension-field theory
that neglects bending stiffness entirely and assumes stress to be

uniaxial. Reissner �9� generalized Wagner’s results and put the
theory into a useful mathematical form. Early studies lacked a
general theoretical framework and were limited to case-by-case
analyses. Only in 1990 did Steigmann �10� develop the general
tension-field theory for isotropic membranes based on the concept
of the relaxed energy function introduced by Pipkin �11�. More
recently, general theories have been developed that include bend-
ing stiffness �12–15�.

There have also been studies on anisotropic membranes. Pipkin
�16,17� modified the tension-field theory developed by Steigmann
�10� to include the response of anisotropic membranes. Epstein
�18� and Epstein and Forcinito �19� developed an effective algo-
rithm to determine the relaxed energy function for anisotropic
membranes that can be implemented into a finite element code.

The purpose of this paper is to examine a particular problem
arising in membrane theory, which is wrinkling of a cylindrical
fiber-reinforced membrane with a wire tightened around its
middle. This problem is derived from the example that was first
considered by Steigmann and Pipkin �20� for isotropic membranes
without reinforcements. Since most biological tissues have a com-
plex anisotropic structure and often contain naturally formed fi-
bers, fiber-reinforced membranes deserve special attention. There-
fore, to further develop the analysis of incompressible fiber-
reinforced membranes, two cases are investigated: A material with
one set of oriented fibers—transversely isotropic material, and a
material reinforced by two mutually orthogonal sets of fibers—
orthotropic material. We change the orientation of the fibers to
determine the direction that requires the maximum force to
squeeze the membrane by a constant amount. This direction
makes the membrane as stiff as possible under the given boundary
conditions and is called the optimal direction.

2 Preliminaries
Greek and Latin indices take values of �1,2� and �1,2,3�, respec-

tively. We denote the transpose of A by AT, the identity tensor by
I, and the partial derivative with respect to x� by
�¯�,����¯� /�x�. We apply the standard summation convention
over repeated indices and the dyadic notation, in which, for any
two vectors f and g, f � g is the tensor whose ij-component is f igj.
If A is a positive semidefinite, we write A�0.

We consider deformations of a nonlinear elastic membrane en-
dowed with preferred directions due to embedded oriented fibers.
The membrane in the reference configuration occupies a bounded
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region � in the �x1 ,x2�-plane with a piecewise-smooth boundary
��. A generic point of the region � is identified by the position
vector x=x�e� with respect to an arbitrary chosen origin. The
coordinates of x are �x1 ,x2� and e1 and e2 indicate a fixed ortho-
normal system of base vectors.

Suppose the membrane is subjected to a three-dimensional de-
formation so that the material particle at x�� is displaced to the
new position r�x�=ri�x�ei, where e3=e1�e2 is the unit normal to
the plane containing �. The deformation gradient tensor, denoted
F�x�, is given by

F = Fi�ei � e� �1�

with components Fi�=�ri /�x�. The gradient tensor F describes
the deformation of an infinitesimal material line element dx at x
into a spatial line element dr at r given by dr=Fdx. The corre-
sponding right Cauchy–Green strain tensor C�x� is given by

C = FTF = C��e� � e� �2�

C being a symmetric 2�2 tensor with components C��=Fi�Fi�.
The elastic stored strain energy, called the strain-energy func-

tion, is denoted by W̄�F�. It is equivalent to the work done per unit
initial area at x in changing the deformation gradient from I to F.
The strain energy is a scalar valued function and is therefore in-
different to a superposed rigid-body rotation after deformation,
i.e., it is objective. Objectivity implies that the strain-energy func-
tion can equivalently be expressed as a function of the Cauchy–
Green strain tensor C as follows:

W̄�F� = W�C� �3�
For full details of the relevant theory on objectivity of strain-
energy functions, the reader is referred to Ref. �21�.

The nonsymmetric first Piola–Kirchhoff stress tensor of an un-
constrained hyperelastic material, also known as the transpose of
the nominal stress, is defined as

� =
�W̄

�F
= 2F

�W

�C
�4�

with components �i�=�W̄ /�Fi�=2Fi��W /�C��. The symmetric
second Piola–Kirchhoff stress tensor is given by

S = ST = F−1�W̄

�F
= 2

�W

�C
�5�

with components S��=F�i
−1�W̄ /�Fi�=2�W /�C��. The key rela-

tionship between the first Piola–Kirchhoff stress tensor � and sec-
ond Piola–Kirchhoff stress tensor S is

� = FS �6�

3 Relaxed Energy Function for Anisotropic
Membranes

Pipkin �17� showed that for an equilibrium state to be stable,
the deformation of a membrane must be noncompressive every-
where. Following the definition proposed by Pipkin, F is a tensile
state if the normal stress on all arcs through a material particle x is
noncompressive. This is true only if S�0.

In actual wrinkling of membranes, the mathematical formula-
tion may not always have a stable solution. Pipkin �17� showed
that this situation can be rectified by replacing the strain-energy
function, W, with a relaxed energy density, Wr, defined by

Wr�C� = inf
��0

W�C + �� �7�

Wr represents the lowest strain-energy density that can be associ-
ated with the deformation C by allowing for the possibility that C
accounts for fine-scale wrinkling. The minimum in Eq. �7� is
achieved at a unique value, �*�C�, where �* is the wrinkling

strain. The associated elastic strain is then defined by the quantity

C*�C� = C + �*�C� �8�

The relaxed strain-energy functions in terms of F and C are given
by

W̄r�F� = Wr�C� = W�C*�C�� �9�
The associated relaxed second Piola–Kirchhoff stress has the
simple form

Sr�C� = S�C*�C�� = 2
�Wr

�C
�10�

Equation �6� becomes

�r =
�Wr

�F
= FSr�C� = FS�C*�C�� �11�

There are three different situations possible in practice. Mem-
brane can be slack, tense, or neither completely slack nor com-
pletely tense, which we call wrinkled. These situations are repre-
sented by the subsets of the right Cauchy–Green deformation
tensor, S, T, and U defined as

S = �C�C � I�, T = �C�S�C� � 0�, U = �C�C not in S or T�
�12�

Within the slack set, S, the strain can be attributed entirely to
wrinkling of the undeformed state C*�C�=I, and the energy and
stresses are

Wr = 0, Sr = 0 in S �13�

Within the tense set, T, the calculated stress, S, is positive. No
wrinkling occurs; therefore, C*�C�=C and the energy and stresses
are given by

Wr�C� = W�C�, Sr�C� = S�C� in T �14�

Within the wrinkled set, U, the associated elastic strain, C*,
produces a uniaxial tension

S�C*� = �t � t �� 	 0, �t� = 1� �15�

and the wrinkling is in the direction orthogonal to t. If n is a unit
vector orthogonal to t then

C = C*�C� − a2n � n �a � 0� �16�

C is in U if and only if Eqs. �15� and �16� can be satisfied, and C
determines the parameters in these relations uniquely, apart from
sign changes of t, n, and a. In subset U we have

Wr�C� = W�C + a2n � n� and Sr�C� = �t � t �17�

We see that, for all C, C*�C� is in T; therefore, Sr�C��0.
Therefore, when Wr is used as the strain-energy function, every F
is tensile. If F is not tensile for W, the membrane relaxes by
wrinkling, and Wr
W.

Stress distribution in a wrinkled region is called a tension field.
In U, � has rank 1, �=p � t, where �t�=1 and we say that � is
uniaxial. For consistency with Eq. �15�, p=�F0t, where F0 is such
that C*=F0

TF0.
Stress trajectories are curves in the initial plane defined by the

direction t. The images of these stress trajectories are the curves
with tangents F0t known as tension lines �10�.

The relaxed energy function is obtained by assuming that the
stress in the wrinkled domain is uniaxial. To solve for the wrin-
kling state in a membrane using tension-field theory, we first de-
termine the direction of the stress trajectories, t.

4 Energy Function for a Reinforced Neo-Hookean
Material

In the present work we investigate wrinkling of fiber-reinforced
membranes subjected to axisymmetric deformations. The mem-
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brane is comprised of an incompressible neo-Hookean base mate-
rial and embedded oriented fibers. Two cases are considered:
transversely isotropic membranes characterized by one family of
oriented fibers and orthotropic membranes with two preferred di-
rections. In three-dimensional theory, the strain energy of an in-
compressible isotropic neo-Hookean material is

Wneo = 1
2G��1

2 + �2
2 + �3

2 − 3�, �3 = ��1�2�−1 �18�

where �i are the principal stretches, G is the shear modulus of a
neo-Hookean material, and the incompressibility constraint is
given by �1�2�3=1. For each set of fibers, we add the quadratic
standard reinforcement model �22�

Wfib = 1
2G��M · �C̃M� − 1�2 �19�

where � is a material constant that provides a measure of the
stiffness of reinforcement in the fiber direction, i.e., the ratio be-
tween the shear moduli of the fibers and the matrix material, M is

a vector that defines the direction of fibers, and C̃ is the three-
dimensional right Cauchy–Green strain tensor. Therefore, the total
strain energy of a transversely isotropic material is

W = Wneo + Wfib �20�
The associated membrane energy may be approximated by setting
�1

2=1, �2
2=2, where 1 and 2 are eigenvalues of the right

Cauchy–Green tensor C of a membrane defined by Eq. �2�, and �3
is the stretch through the thickness. Expressing 1 and 2 in terms
of components of C, the strain-energy function of a transversely
isotropic membrane is obtained as follows:

W =
1

2
G*	C11 + C22 +

1

C11C22 − C12C21
− 3
 +

1

2
G*��C11 cos2 �

+ �C12 + C21�cos � sin � + C22 sin2 � − 1�2 �21�

where G*=Gh, h is the initial thickness of the membrane, and � is
the angle between vectors M and e1.

The strain-energy function of an isotropic membrane endowed
with two sets of orthogonal fibers with the same stiffness charac-
teristics ��� has the form

W =
1

2
G*	C11 + C22 +

1

C11C22 − C12C21
− 3
 +

1

2
G*��C11 cos2 �

+ �C12 + C21�cos � sin � + C22 sin2 � − 1�2 +
1

2
G*��C11 sin2 �

− �C12 + C21�cos � sin � + C22 cos2 � − 1�2 �22�

5 Geometry of Deformation
We consider axisymmetric deformations of a membrane that

has the form of a circular cylindrical tube with radius R and with
top and bottom ends located at z= �L. We assume these ends to
be fixed and use cylindrical coordinates �r ,� ,z�. The results of the
preceding section can be applied to the deformation considered
here because the circular cylinder degenerates into a plane. If we
take x1=R� and x2=z, we can regard any deformation of the cyl-
inder as a mapping from the �x1 ,x2�-plane.

The radial, azimuthal, and axial unit vectors are denominated
by i���, j���, and k, respectively, with the first two being defined
in terms of i= i�0� and j= j�0� by

i��� = i cos � + j sin �, j��� = − i sin � + j cos � �23�

A wire is tightened around the cylinder in the plane z=0, re-
ducing the radius to r0
R. The constriction induces wrinkling of
the cylinder along the generators, which implies that t=k. The
deformation is axisymmetric; consequently, the displacement
function r is independent of �, and thus independent of x1 in the
reference plane.

An approximate solution is first constructed by assuming that
the cylinder is wrinkled over its entire length, so the deformation
is of class U. This solution indicates that there are taut regions
near the ends z= �L; therefore, the application of the boundary
conditions to the fully wrinkled solution yields only an approxi-
mation.

With regard to the upper half of the cylinder, z�0, the wrinkled
region of the deformed membrane is conical. A particle originally
at the place �R ,� ,z� is displaced to the new location

r = r�z�i��� + zk �24�

where r�z�=r0+z tan � and � is the angle between the wrinkled
meridian and the axial direction. The condition r�L�=R gives

tan � =
R − r0

L
�25�

The deformation gradient is F=ri,�ei � e�, with e1= j, e2=k, and
e3= i �in the initial plane e1= j��� because x1=R��. It follows that
the components of r have the form

r1 = �r0 + z tan ��sin �, r2 = z, r3 = �r0 + z tan ��cos �

�26�

We note that �·�,1= �·�,��d� /dx1�= �·�,� /R; thus, we obtain

r1,1 =
r cos �

R
, r2,1 = 0, r3,1 = −

r sin �

R

r1,2 = tan � sin �, r2,2 = 1, r3,2 = tan � cos � �27�

Finally, the deformation gradient is

F = 	 r

R

j��� � j��� + sec �u � k �28�

where u is given by

u = sin �i��� + cos �k �29�

The corresponding expression of the right Cauchy–Green strain
tensor is

C = FTF = 	 r

R

2

j��� � j��� + sec2 �k � k �30�

and the associated principal stretches are

�1 =
r�z�
R

, �2 = sec � �31�

6 Determination of the Relaxed Energy Function
As outlined in Sec. 3, the initial step consists of characterizing

the stress trajectories in the membrane. For a deformation given
by C=C11j��� � j���+C22k � k, expressions of the stress defor-
mation are

S�C� = 2
�W

�C
= 2

�W

�C11
j��� � j��� + 2

�W

�C22
k � k

� = FS�C� = 2
�W

�C11
�Fj���� � j��� + 2

�W

�C22
�Fk� � k �32�

where

Fk = sec �u �33�

The tension-field theory dictates that �=�F0t � t. Given the
geometry and the axisymmetric deformation described in Sec. 5,
we have t=k and therefore for a fully wrinkled domain the stress
deformation relation simplifies to

Journal of Applied Mechanics JANUARY 2009, Vol. 76 / 011011-3

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



� = 2
�W

�C22
�Fk� � k = 2 sec �

�W

�C22
u � k �34�

Then, the relaxed strain-energy function must satisfy the condi-
tions

�Wr

�C11
= 0,

�Wr

�C12
	=

�Wr

�C21

 = 0 �35�

A method proposed by Epstein and Forcinito �19� is used to
prove that these conditions specify the formulation of the relaxed
energy function. The fact that the membrane is unable to with-
stand any in-plane compressive stresses can be written as S�C�
�0 or

S11S22 − S12S21 � 0 �36�

The following is defined in Ref. �19� as the condition for an im-
pending wrinkling of an anisotropic membrane at a given point

�W

�C11

�W

�C22
−

�W

�C12

�W

�C21
= 0 �37�

which can be interpreted as an equation for a surface �� in three-
dimensional space C11, C22, �2C12=�2C21 �C-space�. The char-
acteristic lines corresponding to Eq. �37� can be determined from
the conditions

C11 = � �W

�C22
�

C0
s + C11

0 �38�

C22 = � �W

�C11
�

C0
s + C22

0 �39�

C12 = − � �W

�C22
�

C0
s + C12

0 �40�

where C̄�C-space and C0��� �23�. Epstein �18� also showed
that the relaxed energy function has a constant value along the
characteristic lines that corresponds to the value on the impending

wrinkling surface, Wr�C̄�=W�C0�∀s�0. Therefore, to find the
value of the relaxed energy function corresponding to a given

strain C̄, we need to find C0���, which lies on the same char-
acteristic line and evaluate W�C0�. The following nonlinear sys-
tem of equations must be solved to find corresponding C0��� as
follows:

C11 = � �W

�C22
�

C0
s + C11

0 �41�

C22 = � �W

�C11
�

C0
s + C22

0 �42�

C12 = − � �W

�C22
�

C0
s + C12

0 �43�

� �W

�C11
�

C0
� �W

�C22
�

C0
− � �W

�C12
�

C0
� �W

�C21
�

C0
= 0 �44�

From Eq. �30� C11= �r /R�2,C22=sec2 �, and C12=0. Taking into
account the conditions given by Eq. �35�, from Eq. �43� it is
concluded that

C12
0 = 0 �45�

Then Eq. �44� simplifies to

� �W

�C11
�

C0
� �W

�C22
�

C0
= 0 �46�

If �W /�C22�C0 =0, �=0, which is not the case. It follows that C11
0

is such that

� �W

�C11
�

C0
= 0 �47�

and

C22
0 = sec2 � �48�

Thus, we have shown that condition �35� defines the relaxed en-

ergy function that for C̄, given by Eq. �30�, has the value Wr�C̄�
=W�C0�, with C0 determined from Eqs. �45�–�48�.

Using Eq. �47� with the strain-energy function given by Eq.
�21�, we obtain a cubic equation with respect to C11

0 as follows:

a�C11
0 �3 + b�C11

0 �2 − 1 = 0 �49�

where

a = 2� sec2 � cos4 �

b = sec2 � + 2� sec4 � sin2 � cos2 � − 2� sec2 � cos2 � �50�
For the strain-energy function given by Eq. �22�, we also get a

cubic equation of the form of Eq. �49� with coefficients

a = 2� sec2 ��cos4 � + sin4 ��

b = �1 − 2��sec2 � + 4� sec4 � sin2 � cos2 � �51�

For all possible values of �, �, and � in Eqs. �50� and �51�, Eq.
�49� has three roots, only one of which is a real positive number,
which gives C11

0 as a function of C22
0 denoted by

C11
0 = w�C22

0 � �52�

Remark 1. A numerical analysis of the function w�C22
0 � shows

that w�C22
0 ��1, w�C22

0 �=1 when C22
0 =1, and w�C22

0 � decreases as
C22

0 increases.

7 Tension Field
The force per unit initial length exerted across a parallel plane

located at z=const is

�k = 2 sec �� �W

�C22
�

C0
u �53�

Then, using Eq. �29�, the resultant axial force applied to the mem-
brane is

F = 2�R	2 sec �� �W

�C22
�

C0

cos � = 4�R� �W

�C22
�

C0
�54�

The magnitude of the force in the constricting wire H is given by
summing the radial forces around a semicircle and imposing equi-
librium. Using Eqs. �29� and �53� we have

H = 2R	2 sec �� �W

�C22
�

C0

sin � = 4R tan �� �W

�C22
�

C0
�55�

The assumption that the cylinder is wrinkled along its entire
length has been used in the construction of the previous solution,
but, in fact, �W /�C11�C0 =0 only where C11�w�C22

0 �. From Eq.
�30�, C22

0 is constant, but C11 increases with z. According to this
solution, the value z=zt at which C11=w�C22

0 � is given by

L − zt

R
= �1 − �w�sec2 ���cot � �56�

At the maximum deformation corresponding to r0=0 we have
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tan �m = R/L and �C22
0 �m = 1 + �R/L�2 �57�

and Eq. �56� yields

zt = L�w	1 +
R2

L2
 �58�

From Remark 1, we conclude that there is a band zt
z�L that is
not wrinkled. However, if R /L is small this taut zone is a rela-
tively small fraction of the total length of the cylinder. Since the
boundary conditions were applied to the fully wrinkled solution at
z=L, where that solution is not valid, the values of C22

0 and � for
the wrinkled region are in error by terms of the order of �R /L�2.
Thus the solution given here is only an approximation, valid to the
lowest order on the parameter �R /L�2.

Remark 2. A numerical analysis of the function zt in Eq. �58�
with w given by, Eq. �52� for different angles � shows that if the
ratio R /L=0.1 the taut band �zt
z�L� is less than 0.5 of the total
length L. We note that under this restriction the deformations are
small, and the neo-Hookean strain-energy formulation gives the
same result as infinitesimal deformation theory.

8 Numerical Example
As a numerical illustration of the theory outlined above the

forces given by Eqs. �54� and �55� are determined as a function of
the angle of reinforcement � for different values of nondimen-
sional reinforcing parameter �. In view of Remark 2, the follow-
ing geometrical parameters are selected: L=5 cm, R=0.5 cm, and
r0=0 cm. We note that the material modulus G* in expression
�54� for the axial forces F and in the formulation �55� for H
appears only as a factor. The parameter �=2�RG* is introduced
and the nondimensional ratios F /� and H /� are defined, which
depend only on fiber orientation � and on the stiffness parameter
�. For a membrane reinforced with one set of oriented fibers, the
ratios of the resultant axial force F to � versus � for values of
�=1, 5, 10, and 15 are shown in Fig. 1. The ratios of the force in
the constricting wire H to � versus �, for the same values of �, are
shown in Fig. 2. For the value �=0 the fibers form horizontal
circles around the cylinder. When �=� /2 the fibers are aligned
with the generators of the cylinder, and for any value 0
�

� /2 the fibers form a family of helices on the cylinder. For a
membrane reinforced by two sets of fibers, Fig. 3 shows the ratios
of the resultant axial force F to � versus � for �=1, 5, 10, and 15,
and Fig. 4 show the ratios of the force in the constricting wire H
to � versus � for the corresponding values of �.

If the membrane is not reinforced ��=0�, the results coincide
with the results given in Ref. �20�. For ��0, it is shown that the
forces increase linearly with the magnitude of �, i.e., if the ratio of
the shear moduli of fibers and matrix material increases, the forces
required to squeeze the cylinder by the same amount increase
proportionally.

For a membrane characterized by a single family of oriented
fibers, a change in the direction from horizontal to vertical induces
first a gradual decrease in the magnitude of the forces until a
minimum value is reached, then the magnitude starts to increase
rapidly. The minimum values of the forces are Fm /�=0.0148 and
Hm /�=0.00047156. These are equal to the magnitude of the
forces in the cylinder when no fibers are present ��=0�. The cor-
responding fiber orientation is given by �=0.612846 and depends
on the geometric dimensions of the cylinder. It can be found nu-
merically, but it does not have an obvious physical interpretation.
The maximum values, as expected, are reached, when �=� /2.
Thus, this is the optimal fiber orientation for the given boundary
conditions. For two sets of fibers oriented along orthogonal direc-
tions, the forces have maxima at �=0 and �=� /2 and minima at
�=� /4. The corresponding maximum values coincide approxi-
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Fig. 1 The nondimensional ratios of the resultant axial force F
to the parameter � versus fiber orientation � for a transversely
isotropic membrane. Geometric characteristics of the cylinder:
L=5 cm, R=0.5 cm, and r0=0 cm.
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Fig. 2 The nondimensional ratios of the force in the constrict-
ing wire H to the parameter � versus fiber orientation � for a
transversely isotropic membrane. Geometric characteristics of
the cylinder: L=5 cm, R=0.5 cm, and r0=0 cm.
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Fig. 3 The nondimensional ratios of the resultant axial force F
to the parameter � versus fiber orientation � for a membrane
with two families of oriented fibers. Geometric characteristics
of the cylinder: L=5 cm, R=0.5 cm, and r0=0 cm.
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mately with the maximum values found for unidirectional rein-
forcement, and the minimum values are larger.

Therefore, for the given boundary conditions, one set of fibers
oriented in the direction of the tensile stress, which in this case
coincides with the axis of the cylinder, is sufficient to achieve the
maximum stiffness of the membrane. The second set of fibers is
not needed. However, if other boundary conditions are considered
that generate tensile stresses oriented in different directions, two
sets of fibers make the membrane stiffer compared to one set only.
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Elastostatics of Harmonic
Materials
We investigate a partially debonded circular elastic inclusion embedded in a particular
class of harmonic materials by using the complex variable method under finite plane-
strain deformations. A complete (or full-field) solution is derived. It is observed that the
stresses in general exhibit oscillatory singularities near the two tips of the arc shaped
interface crack. Particularly the traditional inverse square root singularity for stresses is
observed when the asymptotic behavior of the harmonic materials obeys a constitutive
restriction proposed by Knowles and Sternberg (1975, “On the Singularity Induced by
Certain Mixed Boundary Conditions in Linearized and Nonlinear Elastostatics,” Int. J.
Solids Struct., 11, pp. 1173–1201). It is also found that the number of admissible states
under finite plane deformations for given external loads can be two, one, or even zero.
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1 Introduction
The problem of a circular arc shaped crack lying along the

interface of an elastic inclusion is a classical one and has received
considerable amount of attention �1–4�. In these studies, the
mixed-boundary value problem was formulated on the basis of the
complex variable approach and was finally reduced to an inhomo-
geneous Riemann–Hilbert problem whose exact solution can be
easily derived. These studies show that the stresses near the tips of
an interface arc crack still exhibit the same oscillatory singulari-
ties as those obtained for a straight crack between dissimilar me-
dia �5,6�. In previous investigations �1,4�, the problem of an arc
shaped interfacial crack was solved within the framework of lin-
ear elastostatics. In contrast, an exact solution to the analogous
problem in finite elasticity is still absent.

An elegant complex variable formulation of a class of problems
involving the finite plane-strain deformations of a set of com-
pressible hyperelastic materials of harmonic type was recently de-
veloped �7�. The complex variable formulation �7� has also been
applied to �i� get a complete solution for a planar interface crack
between two half-planes occupied by two dissimilar harmonic ma-
terials �7�, �ii� obtain a complete solution for an elliptical inclu-
sion with uniform interior stress field perfectly bonded to a matrix
of harmonic materials under any uniform remote stress distribu-
tion �8�, �iii� identify the harmonic shapes for harmonic materials
�9�, and �iv� analyze the surface instability of a harmonic solid
attracted by a rigid body through the influence of van der Waals
forces �10�.

The objective of the present work is to investigate in detail a
two-dimensional crack along the interface of a circular elastic
inclusion embedded in an unbounded matrix of harmonic materi-
als loaded by remote uniform Piola stresses. By using the complex
variable method, the original mixed-boundary value problem is
finally reduced to an inhomogeneous Riemann–Hilbert problem. It
is found that the Piola stresses near the tips of the arc interface

crack still exhibit the oscillatory singularities as those obtained for
a straight crack �7�. Particularly the conventional inverse square
root singularity for stresses near the tips of the interface arc crack
is still observed when the asymptotic behavior of the harmonic
materials obeys a constitutive restriction proposed by Knowles
and Sternberg �11�.

2 Basic Formulations
Let the complex variable z=x1+ ix2 be the initial coordinates of

a material particle in the undeformed configuration and w�z�
=y1�z�+ iy2�z� be the corresponding spatial coordinates in the de-
formed configuration. The deformation gradient tensor is defined
as

Fij =
�yi

�xj
�1�

For a particular class of harmonic materials, the strain energy
density W defined with respect to the undeformed unit area can be
expressed by

W = 2��F�I� − J�, F��I� =
1

4�
�I + �I2 − 16��� �2�

Here I and J are the scalar invariants of FFT given by

I = �1 + �2 = �FijFij + 2J, J = �1�2 = det�F� �3�

where �1 and �2 are the principal stretches, � is the shear modu-
lus, and 1 /2���1, ��0 are two material constants. This spe-
cial class of harmonic materials has attracted considerable atten-
tion �12,13�.

According to the formulation developed by Ru �7�, the defor-
mation w�z� can be written in terms of two analytic functions ��z�
and 	�z� as

iw�z� = ���z� + i	�z� +
�z

���z�
�4�

and the complex Piola stress function 
�z� is given by
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�z� = 2i���� − 1���z� + i	�z� +
�z

���z�� �5�

In addition, the Piola stress components can be written in terms
of the Piola stress function 
 as

− �21 + i�11 = 
,2, �22 − i�12 = 
,1 �6�

3 Complete Solution for a Partially Debonded Circu-
lar Inclusion

As shown in Fig. 1, we consider a circular inclusion of radius R
partially bonded to an infinite matrix. We take the origin at the
center of the inclusion and assume that an interfacial arc crack,
whose surface is traction-free, is made along the arc Lc of the
interface while along the remaining arc Lb the inclusion is still
perfectly bonded to the matrix. Furthermore, let the center of the
arc Lc lie on the positive x1-axis and the central angle subtended
by the arc Lc is 2�0. a=Rei�0 and b=Re−i�0 are two crack tips. The
elastic materials occupying the inclusion and the matrix belong to
the special class of harmonic materials characterized by Eq. �2�
with the associated elastic constants �1, �1, and �1 and �2, �2,
and �2, respectively. The composite system is assumed to be un-
der the remote uniform Piola stresses �11

 , �22
 , �12

 , and �21
 .

Throughout this paper, all physical quantities associated with the
circular inclusion and unbounded matrix are identified by the sub-
scripts 1 and 2, respectively.

The continuity condition of tractions across the total interface
�z�=R can be expressed as

���1 − 1��1
+�z� + i�	̄1

−�R2/z� +
��1z

�̄1�
−�R2/z�

= ��2 − 1��2
−�z� + i	̄2

+�R2/z� +
�2z

�̄2�
+�R2/z�

, ��z� = R� �7�

where �=�1 /�2, and the superscripts “+” and “−” denote the
limit values from the inner and outer sides of the interface �z�=R,
respectively.

It follows from Eq. �7� that

���1 − 1��1
+�z� − i	̄2

+�R2/z� −
�2z

�̄2�
+�R2/z�

= ��2 − 1��2
−�z� − i�	̄1

−�R2/z� −
��1z

�̄1�
−�R2/z�

, ��z� = R� �8�

At infinity, it is assumed that the remote Piola stresses are uni-
form. Then �2�z� and 	2�z� exhibit the following asymptotic be-
havior:

�2�z� = Az + o�1�, 	2�z� = Bz + o�1�, �z� →  �9�

where the two complex constants A and B are related to the re-
mote Piola stresses �11

 ,�22
 ,�12

 , and �21
 through the following

relations:

− �21
 + i�11

 = 2�2��1 − �2�A + iB̄ −
�2

Ā
�

i�22
 + �12

 = 2�2��1 − �2�A − iB̄ −
�2

Ā
� �10�

In view of Eqs. �8� and �9�, we now define the following new
function ��z� as

Fig. 1 An arc crack along the interface between a circular inclusion and the
matrix
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��z� = 	���1 − 1��1�z� − i	̄2�R2/z� −
�2z

�̄2��R
2/z�

+ � ��1

�1��0�
− ��2 − 1�A�z + iB̄R2z−1, �z� � R

��2 − 1��2�z� − i�	̄1�R2/z� −
��1z

�̄1��R
2/z�

+ � ��1

�1��0�
− ��2 − 1�A�z + iB̄R2z−1, �z� � R
 �11�

It is apparent that ��z� is continuous across the interface �z�
=R and then analytic in the whole plane including the points at
zero and at infinity. Consequently, ��z�=0. As a result we arrive
at the following relationships:

i	̄2�R2/z� +
�2z

�̄2��R
2/z�

= ���1 − 1��1�z�

+ � ��1

�1��0�
− ��2 − 1�A�z + iB̄R2z−1

�12a�

i	̄1�R2/z� +
�1z

�̄1��R
2/z�

= �−1��2 − 1��2�z�

+ � �1

�1��0�
− �−1��2 − 1�A�z + i�−1B̄R2z−1

�12b�

The traction-free condition of the cracked part Lc of the inter-
face can be expressed as

��1 − 1��1
+�z� + i	̄1

−�R2/z� +
�1z

�̄1�
−�R2/z�

= 0, z � Lc �13�

Substituting the result of Eq. �12b� into Eq. �13� yields

��1 − 1��1
+�z� + �−1��2 − 1��2

−�z� + � �1

�1��0�
− �−1��2 − 1�A�z

+ i�−1B̄R2z−1 = 0, z � Lc �14�

In view of Eq. �14�, we introduce an auxiliary function h�z�
defined by

h�z�

= 	��1 − 1��1�z� +
�1

�1��0�
z , �z� � R

�−1�1 − �2��2�z� + �−1��2 − 1�Az − i�−1B̄R2z−1, �z� � R



�15�

Apparently h�z� is holomorphic in �z��R and �z��R, respec-
tively. h�z�=o�1� as �z�→. Furthermore,

h+�z� − h−�z� = 0, z � Lc �16�

The continuity condition of displacements across the bonded
part Lb of the interface can be expressed as

�1�1
+�z� + i	̄1

−�R2/z� +
�1z

�̄1�
−�R2/z�

= �2�2
−�z� + i	̄2

+�R2/z�

+
�2z

�̄2�
+�R2/z�

, z � Lb

�17�
Utilizing Eqs. �12� and �15�, the above expression can be

equivalently expressed in terms of h�z� as

h+�z� + kh−�z� =
�1 − 1

�1 − ���1 − 1�� �1

��1 − 1��1��0�
+ A�z

−
iB̄R2��1 − 1�

��2 − 1���1 − ���1 − 1��
z−1, z � Lb

�18�
where

k =
�1 − �1����2 + �1 − �2��
�1 − �2���1 + ��1 − �1��

� 0 �19�

Therefore, it is observed that the stresses near the two crack tips
a=Rei�0 and b=Re−i�0 exhibit oscillatory singularities, a phenom-
enon in agreement with that observed for a planar interface crack
�7�.

If we choose �1=�2=1 /2 for the situation in which F��I� / I
approaches unity as I tends to infinity �7,11�, then Eq. �18� sim-
plifies to

h+�z� + h−�z� =
1

1 + �
� 2�1

�1��0�
− A�z −

2iB̄R2

1 + �
z−1, z � Lb

�20�
The solution to the inhomogeneous Riemann–Hilbert problem

�i.e., Eqs. �16� and �20�� can be expediently given by

h�z� =
1

1 + �
� �1

�1��0�
−

A

2
��z − X�z�� −

iB̄R2

1 + �
�z−1 − z−1X−1�0�X�z��

�21�

where the multivalued function X�z�=��z−a��z−b� is discontinu-
ous across the bonded part Lb of the interface, and X�z�=z+o�1�
as �z�→. It follows from the above result and Eq. �15� that

�1�z� = −
2

1 + �
� �1

�1��0�
−

A

2
��z − X�z�� +

2iB̄R2

1 + �
�z−1 − z−1X−1�0�X�z�� +

2�1

�1��0�
z , ��z� � R�

�2�z� =
2�

1 + �
� �1

�1��0�
−

A

2
��z − X�z�� −

2i�B̄R2

1 + �
�z−1 − z−1X−1�0�X�z�� + 2iB̄R2z−1 + Az , ��z� � R�

�22�

Once �1�z� and �2�z� are determined, the other two analytic functions 	1�z� and 	2�z� can be determined from Eq. �12� as
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	1�z� = i�−1��2 − 1��̄2�R2/z� −
i�1R2

z�1��z�
+ i� �1

�1��0�
− �−1��2 − 1�Ā�R2z−1 + �−1Bz , ��z� � R�

	2�z� = i���1 − 1��̄1�R2/z� −
i�2R2

z�2��z�
+ i� ��1

�1��0�
− ��2 − 1�Ā�R2z−1 + Bz , ��z� � R�

�23�

Now the unknown �1��0� has to be determined by the following
equation:

�1��0� −
2�1�X��0� + ��

1 + �

1

�1��0�
=

A�1 − X��0��
1 + �

−
iB̄R2

1 + �

X��0�
X�0�

�24�
where

X�0� = R, X��0� = − cos �0, X��0� =
sin2 �0

R
�25�

Next we discuss the roots to Eq. �24� according to the three
cases: ��cos �0, �=cos �0, and ��cos �0.

• X��0�+��0 �or ��cos �0�
In this case there exist two distinct roots for �1��0�.

��1��0�� =
�A�1 + cos �0� − iB̄ sin2 �0� + ��A�1 + cos �0� − iB̄ sin2 �0�2 + 8�1�1 + ���� − cos �0�

2�1 + ��

arg�1��0�� = argA�1 + cos �0� − iB̄ sin2 �0� �26a�
or

��1��0�� =
− �A�1 + cos �0� − iB̄ sin2 �0� + ��A�1 + cos �0� − iB̄ sin2 �0�2 + 8�1�1 + ���� − cos �0�

2�1 + ��

arg�1��0�� = argA�1 + cos �0� − iB̄ sin2 �0� − � �26b�
• X��0�+�=0 �or �=cos �0�

In this case there exists only one single root for �1��0�.

�1��0� = A −
iB̄ sin2 �0

1 + cos �0
�27�

• X��0�+��0 �or ��cos �0�
This case includes three subcases.

• If �A�1+cos �0�− iB̄ sin2 �0��2�2�1�1+���cos �0−��, then there also exist two roots for �1��0�.

��1��0�� =
�A�1 + cos �0� − iB̄ sin2 �0� � ��A�1 + cos �0� − iB̄ sin2 �0�2 + 8�1�1 + ���� − cos �0�

2�1 + ��

arg�1��0�� = argA�1 + cos �0� − iB̄ sin2 �0� �28�

• If �A�1+cos �0�− iB̄ sin2 �0�=2�2�1�1+���cos �0−��, then
there exists only one root for �1��0�.

�1��0� =
A�1 + cos �0� − iB̄ sin2 �0

2�1 + ��
�29�

• If �A�1+cos �0�− iB̄ sin2 �0��2�2�1�1+���cos �0−��,
then there is no possible root for �1��0�.

Due to the fact that the mean Piola stress within the cir-
cular inclusion is given by �9�

�11 + �22 = 4�1 Im��1 − �1��1��z� +
�1

�1��z��, ��z� � R�

�30�
Then the average mean Piola stress within the circular

inclusion is

��11 + �22�average = 4�1 Im��1 − �1��1��0� +
�1

�1��0��
�31�

It is observed from the above expression that the average
mean Piola stress within the circular inclusion is closely
related with �1��0�.

4 Complete Solution for a Perfectly Bonded Circular
Inclusion

If the circular inclusion is perfectly bonded to the matrix, then
the two pairs of analytic functions �1�z� ,	1�z� and �2�z� ,	2�z�
can be easily determined to be
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�1�z� =

A −
�1 − ���1

�1��0�
�1 + ��1 − �1�

z, 	1�z� =
B

��2 + �1 − �2�
z, ��z� � R�

�32�

�2�z� = Az −
i�� − 1�B̄R2

��2 + �1 − �2�
z−1, 	2�z� = Bz + i�� �1

�1 + ��1 − �1�

− �2�Ā +
��1

�1 + ��1 − �1�
1

�1��0��R2z−1

−
i�2R2z

Az2 +
i�� − 1�B̄R2

��2 + �1 − �2�

, ��z� � R� �33�

It then follows from Eq. �32� that stresses are uniform within
the perfectly bonded circular inclusion. The uniformity of stresses
within a more general elliptical inclusion has been observed by Ru
et al. �8�. The unknown �1��0� in Eqs. �32� and �33� can be deter-
mined by the following equation.

�1��0� +
�1 − ���1

�1 + ��1 − �1�
1

�1��0�
=

A

�1 + ��1 − �1�
�34�

In the following, we discuss the roots to Eq. �34� for the three
cases: ��1 �the inclusion is stiffer than the matrix�, �=1 �the
inclusion and the matrix have the same shear modulus�, and �
�1 �the inclusion is softer than the matrix�.

• ��1 �the inclusion is stiffer than the matrix�
In this case there are two roots for �1��0�.

��1��0�� =
�A� + ��A�2 + 4��1 + ��1 − �1���� − 1��1

2��1 + ��1 − �1��

arg�1��0�� = argA� �35a�
or

��1��0�� =
− �A� + ��A�2 + 4��1 + ��1 − �1���� − 1��1

2��1 + ��1 − �1��

arg�1��0�� = argA� − � �35b�
• �=1 �the inclusion and matrix have the same shear

modulus�
In this case there is only one root for �1��0�.

�1��0� = A �36�
• ��1 �the inclusion is softer than the matrix�

This case includes three subcases.

• If �A��2���1+��1−�1���1−���1, then there also exist two
roots for �1��0�.

��1��0�� =
�A� � ��A�2 − 4��1 + ��1 − �1���1 − ���1

2��1 + ��1 − �1��

arg�1��0�� = argA� �37�
• If �A�=2���1+��1−�1���1−���1, then there exists only

one root for �1��0�.

�1��0� =
A

2��1 + ��1 − �1��
�38�

• If �A��2���1+��1−�1���1−���1, then there is no possible
root for �1��0�.

Finally if we let �0=0 �there is no crack on the interface�

in Eq. �24�, and let �1=�2=1 /2 in Eq. �34�, then Eqs. �24�
and �34� will both reduce to the following equation.

�1��0� +
2�1�1 − ��

1 + �

1

�1��0�
=

2A

1 + �
�39�

which partially verifies the correctness of both Eqs. �24�
and �34�.

5 Conclusions
We have investigated the finite plane-strain deformation of a

circular elastic inclusion bonded partially to an unbounded matrix.
The elastic materials occupying the inclusion and the matrix be-
long to the class of harmonic materials. A complete solution to the
arc interface crack problem is derived by means of the complex
variable method. During the derivation, we focus on the case �1
=�2=1 /2 in which the oscillatory singularity will disappear. We
also present the complete solution for a circular inclusion per-
fectly bonded to the matrix. The results show that:

• When one of the two conditions �i� ��cos �0

or �ii� ��cos �0 and �A�1+cos �0�− iB̄ sin2 �0�
�2�2�1�1+���cos �0−�� is satisfied, it is possible to find
two different states under finite plane deformations for the
given remote uniform Piola stresses.

• When one of the two conditions �i� �=cos �0

or �ii� ��cos �0 and �A�1+cos �0�− iB̄ sin2 �0�
=2�2�1�1+���cos �0−�� is satisfied, there exists only one
possible state under finite plane deformations for the given
remote uniform Piola stresses.

• Otherwise when the condition ��cos �0 and �A�1
+cos �0�− iB̄ sin2 �0��2�2�1�1+���cos �0−�� is met,
there exists no possible state under finite plane deformations
for the given remote uniform Piola stresses.
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Quadrilateral Subcell Based
Finite Volume Micromechanics
Theory for Multiscale Analysis of
Elastic Periodic Materials
In this paper, we extend the finite volume direct average micromechanics to enable the
use of quadrilateral subcells. To do this work, the quadrilateral subcells are used to
discretize the repeating unit cells first. Then the average displacement and traction de-
fined on the boundary of the subcell are evaluated by direct integral method. This con-
trasts with the original formulation in which all of the subcells are rectangular. Follow-
ing the discretization, the cell problem is defined by combining the directly volume-
average of the subcell stress equilibrium equations with the displacement and traction
continuity in a surface-average sense across the adjacent subcell faces. In order to
assemble the above equations and conditions into a global equation system, the global
and local number systems, which index the boundary of subcell in different manners, are
employed by the extended method. Finally, the global equation system is solved and the
solutions give the formulations of the microstress field and the global elastic moduli of
material. The introduction of quadrilateral subcells increases the efficiency of modeling
the material’s microstructure and eliminates the stress concentrations at the curvilinear
bimaterial corners. Herein, the advantage of the extension is presented by comparing the
global moduli and local stress fields predicted by the present method with the correspond-
ing results obtained from the original version. �DOI: 10.1115/1.2966176�

Keywords: FVDAM, computational mechanics, multiscale modeling, elastic properties

1 Introduction
Multiscale mechanics method that evaluates the effective me-

chanical properties of heterogeneous materials is becoming a very
important method in present day engineering. The finite volume
direct average micromechanics �FVDAM� for periodic multiphase
materials is a recently developed micromechanics model for the
response of multiphase materials with an arbitrary periodic micro-
structure �1–4�. The analytical framework of FVDAM is based on
the homogenization theory for periodic materials �cf. Kalamkarov
and Kolpakov �5��, but the solution of the local displacement and
stress fields within the repeating unit cell utilizes the concept of
local/global stiffness matrix approach. This approach discards the
two-level unit cell discretization, which is used by high-fidelity
generalized method of cells �HFGMC� �6–8� and constructs the
cell problems by a standard elasticity approach involving the di-
rect volume-averaging of the local field equations and the satis-
faction of the local continuity conditions in a surface-average
sense. This simplifies the derivation of the global system of equa-
tions governing the unit cell response, whose size is substantially
reduced through the elimination of redundant continuity equations
employed in HFGMC �1�.

Even though the FVDAM increases the efficiency of HFGMC,
the subcells used by FVDAM to discretize the repeating unit cell
are limited to rectangles �Fig. 1�. The approximation of curvilinear
inclusions through rectangular discretization increases the re-
quired number of subcells, which makes the analysis more expen-
sive and also results in stress concentration at the curvilinear bi-
material corners �4�. In order to mitigate the negative impact of

rectangular subcell mentioned above, the quadrilateral subcell dis-
cretization capability was incorporated into the finite-volume
theory for functional graded materials by Cavalcante et al. �9–11�
and into FVDAM by Gattu �12� recently. In contrast with the
parametric mapping used by Cavalcante et al., in this paper, we
present another approach, which directly extends the FVDAM to
enable the use of quadrilateral subcells. This is accomplished by
first improving the unit cell volume discretization using quadrilat-
eral subcells as the fundamental building blocks of a periodic
material’s microstructure �Fig. 2�. Then the cell problem is defined
within the theoretical framework of FVDAM. The average quan-
tities defined on the subcell’s boundaries and the stress equilib-
rium equations in average sense are evaluated by direct integral
method. Finally, these equations are solved and the solution gives
the microstress field and the global elastic moduli directly. Ac-
cording to the character of quadrilateral subcell discretization and
theoretical framework of FVDAM, the method presented in this
paper is named quadrilateral finite volume direct average micro-
mechanics �QFVDAM�. The accuracy and efficiency of the
QFVDAM are demonstrated by comparing the global properties
and the local stress fields of a boron/aluminum composite with the
corresponding results obtained from the FVDAM.

2 Theoretical Framework
The multiscale theory �13,14� is employed to derive the formu-

lations of QFVDAM. Within the domain of repeating unit cell, the
construction of the displacement field is based on the two scale
expansion of the form

ui�x,y� = u0i�x,y� + � · u1i�x,y� + �2 · u2i�x,y� + ¯ �1�

where x= �x1 ,x2 ,x3� are the global or macroscopic coordinates,
y= �y1 ,y2 ,y3� are the local or microscopic coordinates defined
with respect to the repeating unit cell, and uji�x ,y� are y-periodic.
The small parameter � characterizes the size of the repeating unit
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cell and relates the microscale to macroscale by y=x /�. Combin-
ing the above displacement field representation with the relation
y=x /� between the two scales, the strain field is separated into
the average stains �̄ij�x� and local strains �̃ij�x�, respectively

�ij = �̄ij�x� + �̃ij�x,y� + O��� �2�
The average and local strains are derived by the corresponding
displacement components ūi and ũi, as

�̄ij�x� =
1

2
� �ūi

�xj
+

�ūj

�xi
�, �̃ij�x,y� =

1

2
� �ũi

�yj
+

�ũj

�yi
� �3�

Using the decomposition of the strains mentioned above, the dis-
placement field representation is expressed in the form

ui�x,y� = �̄ijxj + ũi + O��2� �4�

where �̄ij are the known or applied macroscopic strains. This form
is employed in constructing an approximate displacement field for
the solution of the cell problem.

In the analysis framework of QFVDAM, the fluctuating dis-
placements ũi are the fundamental variables. In order to obtain the
solution of ũi, some equations and conditions are employed, i.e.,
the local stress equilibrium equations within the individual sub-
cells, the traction and displacement continuity conditions between
the individual subcells, and the periodic boundary conditions pre-
scribed at the boundary of repeating unit cell. The above concepts,
which are also employed in FVDAM, are quite different from
FVDAM in detail due to the imposition of the quadrangular sub-
cell. Herein, the details of QFVDAM are presented next.

3 Definition of the Cell Problem
The local analysis is performed on the repeating unit cell rep-

resentative of a periodic material’s microstructure in the x2-x3
plane, see Fig. 2�a�, with continuous reinforcement along the x1
axis. In order to perform the analysis the repeating unit cell high-
lighted in Fig. 2�a� is discretized into subcells designated by an
integer �q�. In the case of Fig. 2, just 400 quadrangular subcells
were used to capture the two reinforcement shapes with sufficient

fidelity. In order to impose the periodic conditions, the discretiza-
tion along the unit cell’s boundary at one side must identify with
the other side.

Following the displacement field representation within the unit
cell given by Eq. �4�, the displacement field in each �q� subcell is
written as follows:

qui = �̄ijxj + qũi �5�

Since the reinforcement is continuous along the x1 axis the fluc-
tuating displacement field that arises due to the heterogeneity of
the material is a function of the local coordinates �qy2 , qy3�, which
is located at the center of the subcell. The fluctuating displacement
field is approximated in each �q� subcell by the second-order poly-
nomial

qũi = qWi1 + qWi2
qy2 + qWi3

qy3 + qWi4�qy2�2 + qWi5�qy3�2

i = 1,2,3, q = 1, . . . ,Nq �6�

where Nq is the total number of subcells and qWij are the unknown
microvariables associated with each subcell. Using the above fluc-
tuating displacement field representation in the strain-
displacement relations

q�ij = �̄ij +
1

2
� �qũi

�qyj

+
�qũj

�qyi
� �7�

The strain components in each �q� subcell are obtained in the form

q�11 = �̄11 �8a�

q�22 = �̄22 + qW22 + 2qW24
qy2 �8b�

q�33 = �̄33 + qW33 + 2qW35
qy3 �8c�

q�23 = �̄23 + �qW23 + qW32�/2 + qW34
qy2 + qW25

qy3 �8d�

q�13 = �̄13 + qW13/2 + qW15
qy3 �8e�

q�12 = �̄12 + qW12/2 + qW14
qy2 �8f�

For orthotropic subcells considered herein, the stiffness matrix is
characterized by nine independent elements, and Hooke’s law has
the form

�
q�11
q�22
q�33
q�23
q�13
q�12

� = �
qC11

qC12
qC13 0 0 0

qC21
qC22

qC23 0 0 0
qC31

qC32
qC33 0 0 0

0 0 0 2qC44 0 0

0 0 0 0 2qC55 0

0 0 0 0 0 2qC66

� · �
q�11
q�22
q�33
q�23
q�13
q�12

�
�9�

Using the approximated expression of fluctuating displacement
field in each �q� subcell in Hooke’s law, the stresses are expressed
in terms of the unknown microvariables qWij and applied average
strains �̄ij

q� = qNs · qW̃ + qCs · �̄ �10�

where
q� = �q�11

q�22
q�33

q�23
q�13

q�12�
T,

�̄ = ��̄11 �̄22 �̄33 �̄23 �̄13 �̄12�T

qW̃= �qW̃1
qW̃2

qW̃3�T, qW̃i= �qWi2
qWi3

qWi4
qWi5�, the super-

script T denotes the transpose. The matrix qNs contains 6�12
elements while qCs contains 6�6 elements.

In the formulation of FVDAM, the surface-average fluctuating
displacements and surface-average tractions are defined at the

Fig. 1 Subcell of FVDAM is strictly limited to a rectangle

Fig. 2 „a… A continuously reinforced multiphase composite
with a periodic microstructure in the x2-x3 plane constructed
with repeating unit cells. „b… RVE is discretized by a quadran-
gular subcell, which is employed by QFVDAM.
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boundary of the subcell, which is limited to a rectangle. In order
to impose the quadrangular subcell in the analysis framework, the
surface-average fluctuating displacements and surface-average
tractions are redefined at the quadrangular subcell’s boundary,
which is not vertical or horizontal anymore. The presentation of
the local stiffness matrix for the quadrangular subcell constructed
in such manner is described below.

3.1 Reformulation of Local Stiffness Matrix. The quadran-
gular subcell is composed of four points and linear boundaries
�Fig. 3�. They are counterclockwise arranged about the subcell’s
center at which the local coordinates locate. At each �q� subcell,
the vector qt�= �qt2

� qt3
�� points out in the direction of the �th

boundary. The components of qt� are expressed in terms of local
coordinates of the subcell’s corner points

qt2
� =

qy2
�+1 − qy2

�

L�

, qt3
� =

qy3
�+1 − qy3

�

L�

�11�

where L� is the length of �th boundary. The normal vector qn�

= �qn2
� qn3

�� of the �th boundary is obtained by rotating the direc-
tion vector deasil through 90 deg. The components of qn� are
determined from

qn2
� = qt3

�, qn3
� = − qt2

� �12�
In order to derive the presentation of the local stiffness matrix,

two sets of surface-average quantities are defined at the subcell’s
boundary. First, the tractions are expressed in the terms of stresses
through Cauchy’s relations

qPi
� = �ij

qnj
� �13�

The corresponding surface-average traction components are de-
fined in the standard manner

qP̄i
� =

1
q
L�
	

qL�

qPi
�dl =

1
q
L�
	

qL�

q�ijnjdl, � = 1,2,3,4

�14�

Similarly, the surface-average fluctuating displacement compo-
nents are determined from

qūi
� =

1
q
L�
	

qL�

qũidl �15�

In order to carry out the integration along the subcell’s boundary,
the local coordinates in each �q� subcell are expressed in the form

qyi = qyi
� + l · qti

�, i = 2,3, � = 1, . . . ,4 �16�

where qyi
� is the local coordinate of point qP�, l is the distance

between any point at qL� and qP�. By carrying out the above
integration, the surface-average displacements and surface-
average tractions become linear functions of the local variables
qWij in each �q� subcell and the applied average strain �̄.

qP̄ = qNp · qW̃ + qCp · �̄ �17�

qū = qNu · qW �18�

where

qP̄ = �qP̄1
qP̄2

qP̄3�T, qP̄i = �qP̄i
1 qP̄i

2 qP̄i
3 qP̄i

4�

qū = �qū1
qū2

qū3�T, qūi = �qūi
1 qūi

2 qūi
3 qūi

4�

qW = �qW1
qW2

qW3�T

qWi = �qWi1
qWi2

qWi3
qWi4

qWi5�T, i = 1,2,3

The matrixes qNP and qCP are the functions of qni
�, qyi

�, q
L�, and

qCij, while qNu is the function of qni
n and qCij.

The expression of surface-average displacements in Eq. �18�
contains a total of 15 unknown qWij variables in each subcell. In
order to express these unknown variables in terms of the 12
surface-average displacements in each subcell, three additional
equations are required. These three equations are obtained by sat-
isfying the stress equilibrium equations in each subcell in an av-
erage sense.

1
qS
	

q�

�ij,jds = 0 �19�

Then, substituting Eq. �10� into Eq. �19�, performing the required
integration, we obtain the three additional equations about the
microvariables qWij in each �q� subcell.

qC66
qW14 + qC55

qW15 = 0 �20a�

qC22
qW24 + qC44

qW25 = 0 �20b�

qC44
qW34 + qC33

qW35 = 0 �20c�

Using Eqs. �18� and �20�, the microvariables qWij are expressed in
terms of the surface-average displacement.

qW̃ = qÑwu · qū, qW = qNwu · qū �21�

Substitution of Eq. �21� into Eq. �17� gives the formulation of the
surface-average tractions expressed in terms of surface-average
displacements and the given global strain

qP̄ = qKp · qū + qCp · �̄ �22�

where qKp is the local subcell stiffness, which is obtained by the

multiplication of qNp and qÑwu.

qKp = qNp · qÑwu �23�

Equation �22� describes the mechanical behavior of each �q� sub-
cell as a Hooke’s law. The approach of constructing the global
stiffness matrix in conjunction with the interfacial traction and
displacement continuity conditions and periodic conditions is pre-
sented next.

3.2 Global Stiffness Matrix. Due to the imposition of the
quadrangular subcell, the manner of constructing the global stiff-
ness matrix in QFVDAM is quite different from that in FVDAM.
In the analysis framework of FVDAM, each subcell is indexed by
a pair of integers �� ,��, see Fig. 1. Between the subcells �� ,��
and ��+1,�� or ��, �� and ��, �+1� there always exists an inter-
face. So the surface-average traction continuity conditions are en-
sured by �1�

p̄i
2+��,�� + p̄i

2−��+1,�� = 0, p̄i
3+��,�� + p̄i

3−��,�+1� = 0, i = 1,2,3

�24�

The surface-average displacement continuity conditions are en-
forced by setting the corresponding displacement component to

Fig. 3 „a… Illustration of boundaries and corner points of sub-
cell and the „b… definition of the direction vector and the normal
vector of the subcell’s boundary
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common unknown quantities as shown below �1�

ūi
2+��,�� = ūi

2−��+1,�� = ūi
2��+1,��, ūi

3+��,�� = ūi
3−��,�+1� = ūi

3��,�+1�

i = 1,2,3 �25�
In the case of QFVDAM, the above methodology is not appro-

priate anymore because the distribution of the subcell is not or-
dered. To construct the global stiffness matrix for QFVDAM, two
types of number systems are imposed to index the subcell’s
boundary. The first type is the subcell number system �SNS�,
which is composed of a pair of integers �q ,��. The variable q
denotes the index of the subcell while � denotes the local index of
the subcell’s boundary �Fig. 4�. This number system was used to
construct the local stiffness matrix previously. The other number
system is the global number system �GNS�, in which the subcell’s
boundary �involving the interface between adjacent subcells and
that attached to the boundary of the repeating unit cell�, is desig-
nated by an exclusive integer �	� �Fig. 4�.

Then, the boundaries of the subcell are divided into two classes:
�1� the interface of adjacent subcells and �2� the boundary of the
repeating unit cell. If the subcell’s boundary �	� belongs to Class
�1�, the surface-average displacement continuity conditions are
enforced by setting the corresponding displacement component to
common unknown quantities as shown below

ūi
	+ = ūi

	− = ūi
	, i = 1,2,3, 	 = 1, . . . ,Nc �26�

where Nc is the total number of interfaces between two adjacent
subcells. The superscript 	+ and 	−, respectively, denote each side
of 	th interface. The surface-average traction continuity condi-
tions are ensured by

P̄i
	+ + P̄i

	− = 0, i = 1,2,3, 	 = 1, . . . ,Nc �27�

If the subcell’s boundary �	� belongs to Class �2�, the periodic
boundary conditions are ensured by

ūi
	�k�+ = ūi

	�k�−, i = 1,2,3, k = 1, . . . ,Nk �28�

and

P̄i
	�k�+ + P̄i

	�k�− = 0, i = 1,2,3, k = 1, . . . ,Nk �29�

where Nk is equal to half of the total number of the subcell’s
boundaries that attach to the boundary of repeating unit cell. The
integer k indexes the kth periodic boundary condition. The super-
scripts 	�k�+ and 	�k�− denote the indices of corresponding sub-
cell’s boundaries that belong to the kth periodic boundary
condition.

Equation �27� is written in terms of the surface-average dis-
placement using Eq. �23�

q	+
Kp�3·�i−1�+�	+,3·�j−1�+l� · q	+

ūj
l + q	−

Kp�3·�i−1�+�	−,3·�j−1�+l� · q	−
ūj

l

+ �q	+
Cp�3·�i−1�+�	+,m� + q	−

Cp�3·�i−1�+�	−,m�� · �̄m = 0

i, j = 1,2,3, l = 1, . . . ,4, m = 1, . . . ,6, 	 = 1, . . . ,Nc

�30�

where �q	+ ,�	+� is the SNS’s index of subcell’s boundary �	� in
the q	+ subcell. �q	− ,�−� is the SNS’s index of subcell’s boundary
�	� in q− subcell. �̄m are the components of applied global strain.

Similarly, Eq. �29� is written in terms of the surface-average
displacement using Eq. �23�

qk+
Kp�3·�i−1�+�k+,3·�j−1�+l� · qk+

ūj
l + qk−

Kp�3·�i−1�+�k−,3·�j−1�+l� · qk−
ūj

l

+ �qk+
Cp�3·�i−1�+�k+,m� + qk−

Cp�3·�i−1�+�k−,m�� · �̄m = 0

i, j = 1,2,3, l = 1, . . . ,4, m = 1, . . . ,6, k = 1, . . . ,Nk

�31�

where the hyposuperscripts k+ and k− denote the two correspond-
ing items, which belong to kth periodic boundary condition.

Changing the number system of the surface-average displace-
ment to GNS in Eqs. �30� and �31� gives

q	+
Kp�3·�i−1�+�	+,3·�j−1�+l� · ūj

��q	+,l� + q	+
Kp�3·�i−1�+�	−,3·�j−1�+l� · ūj

��q	−,l�

+ �q	+
Cp�3·�i−1�+�	+,m� + q	−

Cp�3·�i−1�+�	−,m�� · �̄m = 0

i, j = 1,2,3, l = 1, . . . ,4, m = 1, . . . ,6, 	 = 1, . . . ,Nc

�32�

qk+
Kp�3·�i−1�+�k+,3·�j−1�+l� · ūj

��qk+,l� + qk−
Kp�3·�i−1�+�k−,3·�j−1�+l� · ūj

��qk+,l�

+ �qk+
Cp�3·�i−1�+�k+,m� + qk−

Cp�3·�i−1�+�k−,m�� · �̄m = 0

i, j = 1,2,3, l = 1, . . . ,4, m = 1, . . . ,6, k = 1, . . . ,Nk

�33�

where � is the corresponding index of the subcell’s boundary �q , l�
in GNS.

Equations �28�, �32�, and �33� provide us with a total of 3Nc
+3Nk+3Nk equations in terms of the surface-average displace-
ment ūi

	 indexed by GNS. The total number of ūi
	 is equal to

3Nc+3Nk+3Nk. Hence, the solutions of fundamental unknown
variables ūi

	 can be derived from Eqs. �28�, �32�, and �33�. This is
accomplished by assembling Eqs. �28�, �32�, and �33� into a final
system of equations, which is presented by the form of matrix

K · ū = �C · �̄ �34�

where ū= �ū1 , . . . , ū	 , . . . , ūNb�T and ū	= �ū1
	 , ū2

	 , ū3
	�. Nb is the total

number of subcell boundaries and it is equal to Nc+2Nk. The size
of the global stiffness matrix K is 3Nb�3Nb. While the size of
the global load matrix �C is 3Nb�6.

The above equation relates the unknown surface-average inter-
facial and boundary displacement to the applied macroscopic
strains. In fact, the global stiffness matrix in Eq. �34� is singular
due to the rigid body motion. Based on the periodic condition
presented in Refs. �15–20�, eight corner subcell faces are con-
strained to eliminate the singularity �Fig. 5�. Then Eq. �34� is
reduced by combining and deleting appropriate rows and columns
of K, ū, and �C. The resulting reduced equation is written as

K* · ū* = · �C* · �̄ �35�

The presentation of the surface-average displacement has the form

ū* = K*−1 · �C* · �̄ �36�

Fig. 4 Number system of QFVDAM: „a… relation between the
global number system and the subcell number system, „b… defi-
nition of the global number system, and „c… definition of the
subcell number system
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3.3 Homogenized Constitutive Equations. Through Hill’s
strain concentration tensor �19�, the average strains in each subcell
are related to the applied average strain as

q�̄ = qA · �̄ �37�

where the components of q�̄ are defined by averaging the micros-
trains over the subcell volume as

q�̄ij =	
qV

�ijdv �38�

Substitution of Eq. �8� into Eq. �38� gives the expression of q�̄
in terms of microscopic variables qWij and the applied average
strain �̄. These microvariables are then expressed in terms of the
interfacial surface-average displacements using Eq. �21�. Equation
�36� yields the interfacial and boundary-averaged displacements
as a function of the macroscopic strains. Using this function, the
average strain components in each subcell are obtained in terms of
the applied average strain as presented in Eq. �37�.

The average stress in each subcell is given by Eq. �9�. Substi-
tution of Eq. �37� into Eq. �9� gives the expression of the average
stress in each �q� subcell in terms of the applied average strain.

q�̄ = qCqA · �̄ �39�
The macrostress is obtained by averaging the subcell stress over

the entire repeating unit cell.

�̄ =
1

V

q=1

Nq

qCqA · �̄ �40�

where V is the volume of the repeating unit cell and Nq is the total
number of subcells. Equation �40� can be written in the form of a
macroscopic constitutive equation for the unit cell response as
follows:

�̄ = C* · �̄ �41�

where C* represents the effective elastic stiffness matrix for the
repeating unit cell and is given by

C* =
1

V

q=1

Nq

qCqA �42�

4 Numerical Results
The use of quadrilateral subcells makes QFVDAM convenient

in modeling the microstructure of material. Herein, we test
QFVDAM’s efficiency by determining the effective moduli and
the local stress field of a unidirectional composite, with a square
array of fibers in the x2-x3 plane. To highlight the advantage of
QFVDAM, the moduli, as well as the local stress fields predicted
by QFVDAM are compared with the corresponding FVDAM, re-
sults.

Figure 6 shows the mesh of a boron/aluminum composite with
a fiber volume fraction of 0.47 for both FVDAM and QFVDAM.
Both of the fiber and the matrix phases are isotropic. The values of
actual constituent moduli are given in Table 1. Figures 6�a�–6�c�
are the meshes for FVDAM with unit cells discretized into 10
�10, 20�20, and 40�40 subcells. Figure 6�d� shows the unit
cell discretization for QFVDAM with 441 subcells. The applied
transverse global strain �̄22 is 0.1.

Table 2 gives the macroproperties of boron/aluminum predicted
by QFVDAM and FVDAM. These results are compared with the
corresponding FEM prediction �20� and the experimental results
�21�. In order to mimic the fiber shape exactly, 1600 subcells are
employed by FVDAM �Fig. 6�c�� while QFVDAM used only 112
subcells, which is similar to Fig. 6�d�. The properties predicted by
QFVDAM are close to the experiment for the 112 subcell discreti-
zation, while FVDAM achieves the same results for the 1600
subcell discretization. The reduction of the total number of sub-
cells increases the efficiency of QFVDAM because the time for
calculation is the exponential function of the total number of sub-
cells �see Fig. 7�. The results predicted by a classical microme-

Fig. 5 The corners of the repeating unit cell are constrained

Fig. 6 Unit cell discretization for FVDAM and QFVDAM

Table 1 Material properties of the fiber and matrix
constituents

Young’s moduli �GPa� Poisson’s ratio

Boron fiber 379.3 0.1
Aluminum matrix 68.3 0.3

Table 2 Global properties obtained by numerical method and experiment

FVDAM

QFVDAM
Micromechanics

method FEM Experiment10�10 20�20 40�40

Ez /GPa 230.9 215.4 213.0 215.1 215.5 215 21610�10
Ex /GPa 158.5 144.7 142.6 142.7 122.9 144 140
Exz /GPa 59.79 55.0 53.7 52.17 54.3 57.2 52

xz /GPa 0.2319 0.2538 0.2548 0.252 0.194 0.29 0.29
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chanics method �22� are also listed in Table 2. Since the fiber
radius is close to the distance between fibers, the cylinder repeat-
ing element is not appropriate to mimic the microstructure. This
results in the deviation of Ex and 
xz predicted by the classic
micromechanics method from the experiment.

The local effective stress predicted by QFVDAM is compared
with the corresponding FVDAM results as presented in Fig. 8.
The approximation of circular fibers through rectangular discreti-
zation results in stress concentrations at the corners of the subcell,
as shown in Figs. 8�a�–8�c�, while the concentration is eliminated
in the case of QFVDAM. Figure 8 indicates that the distribution
of the local effective stress predicted by FVDAM with 40�40
subcells is similar to the corresponding result predicted by
QFVDAM with 441 subcells. Based on Fig. 7, we conclude that
the use of quadrangular subcells reduces the unnecessary subcells
to mimic the microstructure of materials and makes QFVDAM
more efficient in calculating the microscopic stress fields.

5 Discussion
Beginning with the previous work of Aboudi et al. a series

multiscale mechanics method, such as GMC �23–27�, HFGMC
�6–8�, and FVDAM �1–4�, is proposed to predict the macroscopic

behavior and microscopic stress field. All of these methods are
based on the average stress equilibrium equations within the sub-
cell and the surface-average displacement and traction continuity
conditions at the boundaries of subcells. In order to simplify the
derivation of the equations system, rectangular subcells are em-
ployed into those methods because the boundaries of the subcell
are either vertical or horizontal. On the other hand, this simplifi-
cation increases the required number of subcells, which makes the
analysis more expensive and also results in stress concentrations
at the curvilinear bimaterial corners. In this paper, within the the-
oretical framework of FVDAM, the local stiffness matrices for
quadrangular subcells are developed to decrease the required
mesh refinement for modeling curvilinear shapes and to eliminate
the undesired stress concentrations. This advantage of QFVDAM
is significant for nonlinear analysis and for topological optimiza-
tion of the material’s microstructure because these types of analy-
sis may contain thousands of iterations.

There are many differences and similarities between FVDAM
and QFVDAM. First, both methods are based on the average
stress equilibrium equations in conjunction with the surface-
average displacement continuity conditions and the surface-
average traction continuity conditions. Second, both FVDAM and
QFVDAM employ the concept of the local/global stiffness matrix
to solve the cell problem. Third, the subcell of FVDAM is strictly
limited to rectangles while the QFVDAM’s subcell is extended to
quadrangles. This character of QFVDAM results in the different
manner of constructing the stiffness matrix of the subcell in con-
trast with FVDAM. Fourth, the distribution of subcells for
FVDAM is regular and we can index the boundary of subcell by a
pair of integers �� ,��. However, the subcells of QFVDAM can be
distributed arbitrarily. In order to assemble and construct the glo-
bal stiffness matrix, the local and global number systems are em-
ployed.

Although the parametric formulation developed by Gattu �12�
and Cavalcante et al. �10,11� and QFVDAM incorporate quadri-
lateral subcell discretization capability into the FVDAM theory,
they differ in the manner of constructing the stiffness matrix of a
subcell. In fact, the key problems in extending FVDAM include
�1� how to perform the integration within the quadrilateral subcell
and �2� how to assemble the stiffness matrix of each subcell into
the global equation system. In the parametric formulation, the
integration is performed by a parametric mapping of coordinates
from a reference square subcell onto a quadrilateral subcell. How-
ever, in QFVDAM, the integral is performed by a direct approach,
which is described in this paper. Except this difference, both
methods employ global/local number systems to assemble the glo-
bal equation system.

6 Conclusions
Combining the theoretical framework of FVDAM and the

quadrilateral subcell discretization, an extension of FVDAM is
developed in this paper. The present method employs quadrilateral
subcells to model the microstructure of multiphase materials. In
the numerical example presented here, QFVDAM and FVDAM
are used to determine the global elastic moduli and local effective
stress field of the B /Al composite. A series of repeating unit cells
with an increasing total number of subcells were used for
FVDAM to generate a convergent result. These results were com-
pared with the corresponding QFVDAM’s results. The compari-
son indicated that the extension presented in this paper is impor-
tant for FVDAM since the quadrilateral subcell discretization not
only substantially reduces the size of the equation system govern-
ing the unit cell response but also eliminates the stress concentra-
tion at the microscopic level observed in the FVDAM results.
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Fig. 7 Time for calculation

Fig. 8 Local effective stress predicted by QFVDAM and
FVDAM, comparison of the QFVDAM prediction with the corre-
sponding result predicted by FVDAM
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Structure of Near-Tip Stress Field
and Variation of Stress Intensity
Factor for a Crack in a
Transversely Graded Material
The existing studies on the behavior of cracks in continuously graded materials assume
the elastic properties to vary in the plane of the crack. In the case of a plate graded along
the thickness and having a crack in its plane, the elastic properties will vary along the
crack front. The present study aims at investigating the effect of elastic gradients along
the crack front on the structure of the near-tip stress fields in such transversely graded
materials. The first four terms in the expansion of the stress field are obtained by the
eigenfunction expansion approach (Hartranft and Sih, 1969, “The Use of Eigen Function
Expansion in the General Solution of Three Dimensional Crack Problems,” J. Math.
Mech., 19(2), pp. 123–138) assuming an exponential variation of the elastic modulus.
The results of this part of the study indicated that for an opening mode crack, the angular
structure of the first three terms in the stress field expansion corresponding to r��1/2�, r0,
and r1/2 are identical to that given by Williams’s solution for homogeneous material
(Williams, 1957, “On the Stress Distribution at the Base of a Stationary Crack,” ASME
J. Appl. Mech., 24, pp. 109–114). Transversely graded plates having exponential grada-
tion of elastic modulus were prepared, and the stress intensity factor (SIF) on the com-
pliant and stiffer face of the material was determined using strain gauges for an edge
crack subjected to pure bending. The experimental results indicated that the SIF can vary
as much as two times across the thickness for the gradation and loading considered in
this study. �DOI: 10.1115/1.2966177�

Keywords: stress intensity factor, transversely graded materials, opening mode crack,
elastic gradient

1 Introduction
There exists a large body of literature dealing with the analysis

of cracks in graded materials �1–10�. In these studies, the geom-
etry of the problem is such that the elastic properties remain con-
stant along the crack front, and hence the problem can be analyzed
as a plane problem. In other words, the elastic properties vary in
the plane of the problem and the crack may be oriented at an
angle, in the range 0–180 deg, to the direction of the property
variation. For these crack configurations, the existence of the clas-
sical inverse square root singularity in the stress field has been
unanimously established, and hence the stress intensity factor
�SIF� completely characterizes the near-tip stress field �1,2�. There
are also studies, which addressed the influence of the elastic gra-
dient on the structure of the stress field �6,7�, crack kinking �3,8�,
size of the singularity dominant zone �5,9�, etc., for cracks in
graded materials.

One problem, which has received less attention, is the case of a
crack oriented such that there is elastic gradation along the crack
front. This case cannot be considered as a plane problem and has
to be treated in the three-dimensional framework. Walters et al.
have studied semielliptical surface cracks in plates having grada-
tion through the thickness using finite element method �11�. In
their study the elastic properties vary along the crack front, and
they have developed a general domain integral method to calcu-
late the variation of J along the crack front. Subsequently, Yildi-

rim et al. have carried out a three-dimensional finite element
analysis of semielliptic surface cracks in a graded coating bonded
to a homogeneous substrate and subjected to thermomechanical
loading �12�. Recently, Ayhan used enriched finite elements to
determine the SIF variation along the crack front for semielliptical
cracks in graded plates �13�. To the best of our knowledge, the
asymptotic structure of the stress field for a through thickness
crack in a plate having elastic properties varying along the plate
thickness �crack front� has not received attention so far. To distin-
guish this problem from those discussed in Refs. �1–10�, we refer
to this case as a crack in a transversely graded material, implying
that the gradation is transverse to the crack.

Hartranft and Sih �14� were the first to provide the asymptotic
three-dimensional stress fields for cracks in homogeneous materi-
als. They used eigenfunction expansion to determine the near-tip
structure of the displacement and stress components and estab-
lished that, within the material, all stress components exhibit the
inverse square root singularity. Using integral transform method,
Hartranft and Sih �15� also determined the variation of SIF
through the thickness of a cracked plate made of homogeneous
material. Subsequently, Badaliance and Sih �16� have provided an
approximate three-dimensional theory for cracks in a layered plate
having layer properties and configuration distributed symmetri-
cally with respect to the middle plane of the assembly. In their
work, the elastic properties have jumps across the crack front.
From the context of graded materials, this plate configuration can
be viewed as a transversely graded plate, which is discretely
graded along the thickness. However, the material is homoge-
neous within each layer, and hence the governing equations will
still retain the classical form given in Ref. �14�.

Sih �17� has given an extensive review of the issues and com-
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plexities associated with three-dimensional problem of a cracked
plate, and concluded that the problem in its entirety is not ame-
nable to an exact solution. Approximate solutions obtained using
variational principle �15� also have some limitations; nevertheless,
given the complexity of such problems, the results provide con-
siderable insight into the nature of the stress field. Subsequently
there are several investigations �18–22� attempting to explain/
remedy some of the inconsistencies mentioned in Ref. �17�.

In this paper, the three-dimensional problem of a cracked plate
is revisited in the context of a transversely graded material where
the elastic modulus varies continuously along the crack front
�plate thickness�. The eigenfunction expansion technique �14� is
used to develop the structure of the crack-tip stress field. For
mathematical tractability, an exponential variation of the elastic
modulus is assumed. Subsequently, the effect the elastic gradient
on the SIF is studied through experimental measurements. To this
extent, a transversely graded plate with exponential variation of
elastic modulus was prepared in the form of a particulate compos-
ite with varying particle volume fraction along the thickness. An
edge cracked plate of this material was loaded in pure bending in
the plane of the plate, and the SIF on the compliant side and stiff
side of the pate was determined using strain gauges. The math-
ematical derivation, preparation, and characterization of the trans-
versely graded plate and the determination of the SIF are pre-
sented sequentially in the following sections.

2 Expansion of the Displacement and Stress Fields
The geometric configuration of the problem at hand is depicted

in Fig. 1. In this figure, the straight crack front is along the z axis.
The plate is bounded in the thickness �z� direction and the crack
faces are traction free. The elastic modulus variation is assumed,
as given in Eq. �1�, whereas the Poisson’s ratio � is assumed to be
constant. The problem is formulated in cylindrical coordinates
with the origin located at the crack tip.

E�z� = E0e�z �1�

where E0 is the elastic modulus at z=0 and �, referred to as the
nonhomogeneity parameter, is a constant having dimension L−1.
The Navier equations of equilibrium in cylindrical coordinates can
be written for this material as
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where �= ��ur /�r�+ �1 /r���u� /���+ �ur /r�+ ��uz /�z� and �2

= ��2 /�r2�+ �1 /r��� /�r�+ �1 /r2���2 /��2�+ ��2 /�z2� and ur, u�, and
uz are the components of the displacements in the r, �, and z
directions, respectively.

Note that by letting � be zero, Eq. �2� will reduce to the clas-
sical form given in Ref. �14� for a homogeneous material. Follow-
ing the approach of Hartranft and Sih �14�, the displacement com-
ponents are expanded as a double series, as given in
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where the powers of r, �m �m=0,1 ,2 . . . �, and the functions Un
�m�,

Vn
�m�, and Wn

�m� are yet to be determined. Substitution of Eq. �3� in
Eq. �2� and collecting the terms associated with identical powers
of r, we can construct a set of partial differential equations as
follows:

2�1 − �����m + n�2 − 1�Un
�m� + ���m + n� − 3 + 4��

�Vn
�m�

��

+ �1 − 2��
�2Un

�m�

��2

= − ��m + n − 1�
�Wn−1

�m�

�z
− ��1 − 2����m + n − 1�Wn−1

�m�

− �1 − 2��
�2Un−2

�m�

�z2 − ��1 − 2��
�Un−2

�m�

�z

2�1 − ��
�2Vn

�m�

��2 + �1 − 2�����m + n�2 − 1�Vn
�m�

+ ���m + n� + 3 − 4��
�Un

�m�

��

= − �1 − 2��
�2Vn−2

�m�

�z2 −
�2Wn−1

�m�

���z

− ��1 − 2��
�Wn−1

�m�

��
− ��1 − 2��

�Vn−2
�m�

�z

�1 − 2��
�2Wn

�m�

��2 + �1 − 2����m + n�2Wn
�m�

= − ��m + n�
�Un−1

�m�

�z
−

�2Vn−1
�m�

���z
− 2�1 − ��

�2Wn−2
�m�

�z2

− 2��1 − ��
�Wn−2

�m�

�z
− 2����m + n�Un−1

�m� − 2��
�Vn−1

�m�

��
�4�

It should be noted that the functions
U−1

�m� ,U−2
�m� ,V−1

�m� ,V−2
�m� ,W−1

�m� ,W−2
�m�, etc., in Eq. �4� are zero. Now the

solutions to Un
�m�, Vn

�m�, and Wn
�m� can be obtained for each value of

n. For n=0, the right-hand side of the equations in Eq. �4� will be
zero and Eq. �4� will reduce to the form given in Ref. �14�, even
though the Navier equations �Eq. �2�� in the present study are

Fig. 1 Transversely graded plate with an edge crack
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different. The solution for n=0 is therefore the same as that given
in Ref. �14�; however, they are provided here for the sake of
completeness. For n=0 we can obtain U0

�m�, V0
�m�, and W0

�m� as

U0
�m� = B1

�m��z�cos��m + 1�� + B2
�m��z�sin��m + 1�� + C1

�m��z�cos��m

− 1�� + C2
�m��z�sin��m − 1��

V0
�m� = − B1

�m��z�sin��m + 1�� + B2
�m��z�cos��m + 1��

+
��m + 3 − 4��
��m − 3 + 4��

�− C1
�m��z�sin��m − 1�� + C2

�m��z�cos��m

− 1���

W0
�m� = A1

�m��z�cos��m�� + A2
�m��z�sin��m�� �5�

in which Aj
�m�, Bj

�m�, and Cj
�m� �j=1,2� are functions of z.

Using the strain displacement relations and Hooke’s law, the
stress components are evaluated and on imposing the traction free
condition on the crack face, ���=�r�=��z=0, �= 	
, we get the
following equations:

B1
�m��z�cos��m + 1�
 	 B2

�m��z�sin��m + 1�
 +
��m + 1�

��m − 3 + 4��
�C1

�m�

��z�cos��m − 1�
 	 C2
�m��z�sin��m − 1�
� = 0

B1
�m��z�sin��m + 1�
 	 B2

�m��z�cos��m + 1�
 +
��m − 1�

��m − 3 + 4��
�C1

�m�

��z�sin��m − 1�
 	 C2
�m��z�cos��m − 1�
� = 0

A1
�m��z�sin��m�
 	 A2

�m��z�cos��m�
 = 0 �6�
For a nontrivial solution of the above set of equations, the de-

terminant of the coefficients of functions of z must vanish, and
this condition is achieved for the following values of �m:

�m =
m

2
, m = 0,1,2, . . . �7�

The negative values of m have been excluded in Eq. �7� so that
the displacements are bounded as r→0. At this stage, the depen-
dence of the displacements on r is established and hence Eq. �3�
can be written as a single series, as follows:

ur = 	
n=0

�

rn/2fn��,z�, u� = 	
n=0

�

rn/2gn��,z�, uz = 	
n=0

�

rn/2hn��,z� �8�

where fn, gn, and hn are yet to be determined. Using the strain
displacement relations and Hooke’s law, the stress components
corresponding to the displacements in Eq. �8� can be written in
terms of the functions fn, gn, and hn as

�1 + ���1 − 2��
E0e�z �rr = 	

n=0

�

r�n/2−1���n

2
− 
n

2
− 1��� fn

+ �� �gn

��
+

�hn−2

�z
��

�1 + ���1 − 2��
E0e�z ��� = 	

n=0

�

r�n/2−1���1 + 
n

2
− 1��� fn + �1 − ��

�gn

��

+ �
�hn−2

�z
�

�1 + ���1 − 2��
E0e�z �zz = 	

n=0

�

r�n/2−1����
n

2
+ 1� fn +

�gn

��
�

+ �1 − ��
�hn−2

�z
�

2�1 + ��
E0e�z �r� = 	

n=0

�

r�n/2−1�� �fn

��
+ 
n

2
− 1�gn�

2�1 + ��
E0e�z ��z = 	

n=0

�

r�n/2−1�� �hn

��
+

�gn−2

�z
�

2�1 + ��
E0e�z �rz = 	

n=0

�

r�n/2−1��n

2
hn +

�fn−2

�z
� �9�

The new series representation of the displacement field given in
Eq. �8� is substituted in Eq. �2� resulting in the following set of
partial differential equations:

�1 − 2��
�2fn

��2 + �n

2
− 3 + 4�� �gn

��
+ 2�1 − ���n2

4
− 1� fn

= − 
n

2
− 1� �hn−2

�z
− ��1 − 2��
n

2
− 1�hn−2

− �1 − 2��
�2fn−4

�z2 − ��1 − 2��
�fn−4

�z

2�1 − ��
�2gn

��2 + �n

2
+ 3 − 4�� �fn

��
+ �1 − 2���n2

4
− 1�gn

= −
�2hn−2

���z
− ��1 − 2��

�hn−2

��
− �1 − 2��

�2gn−4

�z2

− ��1 − 2��
�gn−4

�z

�1 − 2��� �2hn

��2 +
n2

4
hn� = −

n

2

�fn−2

�z
−

�2gn−2

���z
− 2�1 − ��

�2hn−4

�z2

− 2��1 − ��
�hn−4

�z
− n��fn−2 − 2��

�gn−2

��

�10�

Equation �10� is solved for each value of n starting with n=0 to
determine the functions fn, gn, and hn. For n=0 and 1, the right
hand side of Eq. �10� will be zero and we will get the following
solution:

f0 = �1�B0�z�cos � + �2�B0�z�sin � + �3 − 4����1�C0�z�� sin �

− �2�C0�z�� cos ��

g0 = − ��1�B0�z� + �1�C0�z��sin � + ��2�B0�z� + �2�C0�z��cos � + �3

− 4����1�C0�z�� cos � + �2�C0�z�� sin ��

h0 = �1�A0�z� + �2�A0�z��

f1 = �5 − 8����1�B1�z�cos
�

2
+ �2�B1�z�sin

�

2
� − �1�C1�z�cos

3�

2

+ �2�C1�z�sin
3�

2
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g1 = �7 − 8����2�B1�z�cos
�

2
− �1�B1�z�sin

�

2
� + �1�C1�z�sin

3�

2

+ �2�C1�z�cos
3�

2

h1 = �1�A1�z�cos
�

2
+ �2�A1�z�sin

�

2
�11�

By this way the functions fn, gn, and hn for each value of n can
be obtained, and these are given in the Appendix up to n=4. It
should be noticed that the solution is complete only to the extent
of their dependence on r and � at this stage and the functions
�i�Aj�z�, �i�Bj�z�, �i�Cj�z�, etc., are yet to be determined. The terms
in the expansion of the stress field corresponding to each value of
n, obtained using Eq. �11� in Eq. �9�, are as follows. For n=0 after
applying the traction free boundary condition on the crack face,
we get �2�A0�z�= �i�C0�z�=0, i� �1,2 and all the stress compo-
nents will vanish for this case. For n=1, after imposing the trac-
tion free crack face boundary condition, we will get the following
singular stress components:

�1 + ��
E0e�z ��rr�1 = r−1/2�1

2
�1�B1�z��cos

3�

2
− 5 cos

�

2
� +

1

2
�2�B1�z�

��sin
3�

2
−

5

3
sin

�

2
��

�1 + ��
E0e�z �����1 = r−1/2�−

1

2
�1�B1�z��cos

3�

2
+ 3 cos

�

2
� −

1

2
�2�B1�z�

��sin
3�

2
+ sin

�

2
��

�1 + ��
E0e�z ��zz�1 = r−1/2�− 4���1�B1�z�cos

�

2
+

1

3
�2�B1�z�sin

�

2
��

�1 + ��
E0e�z ��r��1 = r−1/2�−

1

2
�1�B1�z��sin

3�

2
+ sin

�

2
� +

1

2
�2�B1�z�

��cos
3�

2
+

1

3
cos

�

2
��

�1 + ��
E0e�z ���z�1 =

1

4
�2�A1�z�r−1/2 cos

�

2

�1 + ��
E0e�z ��rz�1 =

1

4
�2�A1�z�r−1/2 sin

�

2
�12�

One can notice that all the stress components in Eq. �12� have
the classical inverse square root behavior. In fact, this solution is
exactly the same as that given in Ref. �14�. Therefore, one can
conclude that for the exponential variation of the elastic modulus,
the transverse elastic gradient does not affect the inverse square
root singular nature of the stress field at the crack tip. The same
conclusion has been established for elastic gradients in the plane
of the crack �1,2�. Furthermore, the angular structure of the stress
field in Eq. �12� is also identical to that reported in Ref. �14� for
homogeneous materials and it is same as that given by Williams
for a plane crack �23�. Hence the effect of the nonhomogeneity
has to be captured by the functions �i�Aj�z�, �i�Bj�z�, etc., which are
to be determined. Another observation is that the function �1�B1�z�
is associated with deformation symmetric about the crack line �the
classical opening mode� and �2�B1�z� is associated with the skew-
symmetric displacements �sliding mode�. The function �2�A1�z�
will correspond to the antiplane mode of loading �tearing mode�.
The singular stress components from each mode is separable. In

this context, the functions �1�B1�z�, �2�B1�z�, and �2�A1�z� can be
related to the classical Mode-I, Mode-II, and Mode-III stress in-
tensity factors k1�z�, k2�z�, and k3�z�, respectively, as follows:

k1�z� = −
2�2


�1 + ��
�1�B1�z�E�z�

k2�z� =
2�2


3�1 + ��
�2�B1�z�E�z�

k3�z� =
�2


4�1 + ��
�2�A1�z�E�z� �13�

Equation �13� indicates that the SIF will vary along the crack
front and is explicitly dependent on the elastic gradient. The stress
field for n=2 is given below:

�1 + ��
E0e�z ��rr�2 = �1�B2�z��1 + cos 2��

�1 + ��
E0e�z �����2 = �1�B2�z��1 − cos 2��

�1 + ��
E0e�z ��zz�2 = 2��1�B2�z� + �1 + ���1�A0��z�

�1 + ��
E0e�z ��r��2 = − �1�B2�z�sin 2�

�1 + ��
E0e�z ���z�2 = −

1

2
��1�A2�z� + �1�B0��z��sin �

�1 + ��
E0e�z ��rz�2 =

1

2
��1�A2�z� + �1�B0��z��cos � �14�

In Eq. �14� and subsequent equations, primes denote differen-
tiation with respect to z. Equation �14� indicates that all the
stresses are independent of r. Furthermore, it can be seen from
Eqs. �13� and �14� that the in plane stress components
��rr ,��� ,�r�� are not affected by either the three dimensionality
or the elastic gradient and have the same structure as that given by
William’s solution �23�. The same is not true for the other three
stress components ��zz ,�z� ,�rz�. The effect of the three dimen-
sionality manifests in the additional terms, which are multiplied
by �1�A0��z� and �1�B0��z�. For the n=3 and 4, the stress components
are given as follows:

�1 + ��
E0e�z ��rr�3 = r1/2�3

2
�1�B3�z��cos

5�

2
+ 3 cos

�

2
� +

3

2
�2�B3�z�

��sin
5�

2
+

3

5
sin

�

2
� −

1

5
�2�A1��z�sin

�

2

−
1

5
�2�A1�z�� sin

�

2
�

�1 + ��
E0e�z �����3 = r1/2�−

3

2
�1�B3�z��cos

5�

2
− 5 cos

�

2
� −

3

2
�2�B3�z�

��sin
5�

2
− sin

�

2
��

�1 + ��
E0e�z ��zz�3 = r1/2�12���1�B3�z�cos

�

2
+

1

5
�2�B3�z�sin

�

2
� +

1

5
�5

+ 4���2�A1��z�sin
�

2
−

1

5
��2�A1�z�� sin

�

2
�
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�1 + ��
E0e�z ��r��3 = r1/2�−

3

2
�1�B3�z��sin

5�

2
− sin

�

2
� +

3

2
�2�B3�z�

��cos
5�

2
−

1

5
cos

�

2
� −

1

10
�2�A1��z�cos

�

2

−
1

10
�2�A1�z�� cos

�

2
�

�1 + ��
E0e�z ���z�3 = r1/2�3

4
�2�A3�z�cos

�

2
+ �3 − 4���1�B1��z��sin

3�

2

+ sin
�

2
� +

1

2
�2�B1��z��cos

3�

2
−

2

3
�3 − 4��cos

�

2
�

− ����1�B1�z��sin
3�

2
+ sin

�

2
�

+
1

3
��2�B1�z�cos

�

2
��

�1 + ��
E0e�z ��rz�3 = r1/2�− �1�B1��z���3 − 4��cos

3�

2
+ �1 − 4��cos

�

2
�

+
3

4
�2�A3�z�sin

�

2
+

1

2
�2�B1��z��sin

3�

2
−

2

3
�1

− 4��sin
�

2
� + ��3��1�B1�z��1

3
cos

3�

2
+ cos

�

2
�

+ ��2�B1�z�sin
�

2
+

3

4
�2�A3�z�sin

�

2
�� �15�

For n=4,

�1 + ��
E0e�z ��rr�4 = r�2�1�B4�z��cos 3� +

1

3
cos �� + 2�2�B4�z��sin 3�

+ sin �� −
1

3
��1�A2��z� + �1�B0��z� + ��1�A2�z�

+ ��1�B0��z��cos ��
�1 + ��
E0e�z �����4 = r�− 2�1�B4�z��cos 3� − cos �� − 2�2�B4�z��sin 3�

− sin ��

�1 + ��
E0e�z ��zz�4 = r�8��1

3
�1�B4�z�cos � + �2�B4�z�sin �� − �1

+ ���2�B0��z�sin � +
1

3
��3 + 2���1�A2��z� − ��1�B0��z�

− ���1�A2�z� − ���1�B0��z��cos ��
�1 + ��
E0e�z ��r��4 = r�− 2�1�B4�z��sin 3� −

1

3
sin �� + 2�2�B4�z��cos 3�

− cos �� +
1

6
��1�A2��z� + �1�B0��z� + ��1�A2�z�

+ ��1�B0��z��sin ��

�1 + ��
E0e�z ���z�4 = r�− ��1�A4�z� +

1

2
�1�B2��z��sin 2� +

1

2
�2�B2��z��1

− cos 2���
�1 + ��
E0e�z ��rz�4 = r���1�A4�z� +

1

2
�1�B2��z��cos 2� −

1

2
�2�B2��z�sin 2�

− ��1�B2��z� −
�1 + ��

2
�1�A0��z� − �

�1 + ��
2

�1�A0��z�

+ ���1�B2�z�� �16�

In Eqs. �15� and �16�, the stress components have three parts:
one part, which is similar to that of William’s plane solution �23�,
the second from the three-dimensional effects �14�, and the third
due to the elastic gradient. The additional terms arising out of the
elastic gradient have the nonhomogeneity parameter � as the mul-
tiplier. Similar effects of elastic gradient on the structure of the
stress field have been reported for the case of the elastic gradient
in the plane of the crack �6,7�. It should be pointed out here that
Eqs. �15� and �16� will reduce to that given in Ref. �14� if � is set

to zero. For opening mode cracks, �i�Aj��z�=0 and �2�Bj��z�=0 and
one can easily notice from Eqs. �12�–�15� that the first three terms
corresponding to r�−1/2�, r0, and r1/2 in the stress components
��rr ,��� ,�r�� are identical to that for a homogeneous material
�14,23�. Three-dimensional and nonhomogeneity effects appear
only from the term corresponding to r1. The stress components
��rr ,��� ,�r� ,�zz� exhibit the inverse square root singular behav-
ior as r tends to be zero, as pointed out in Ref. �14�.

3 Discussion on the Stress Field
The expansion of the stress field obtained in the previous sec-

tion was developed without considering any far-field loading.
Hence the expansion only brings out the structure of the stress
field in the r and � coordinates and how the structure is influenced
by the material nonhomogeneity. The only boundary condition
that was enforced is the traction free condition on the crack sur-
faces. The two faces �z=0 and h� of the plate �see Fig. 1�, which
are perpendicular to the z axis, are essentially free surfaces, and
therefore the stress components ��zz ,�zr ,�z�� should be zero on
these surfaces. A closer look at the stress field �Eqs. �12�–�16��
will reveal that the stress components ��zz ,�zr ,�z�� do not vanish
on these surfaces. Even in the case of homogeneous materials, the
solutions provided in Ref. �14� do not satisfy the traction free
condition on the faces of the plate. A detailed discussion on this
fact and a possible remedy to this situation using the concept of a
boundary layer is given in Ref. �15�. Accordingly, the stresses
given by Eqs. �12�–�15� are perfectly valid inside the material
where the singular stress components satisfy the conditions of
plane strain for opening mode and shear mode loading. The
stresses, however, are not valid within a small layer of material
adjacent to the free surfaces.

Subsequently, for homogeneous material researchers have
pointed out that, in a region very close to the intersection of the
crack front and the free surface, the deformation field should be
governed by the corner singularity �18–22�. Very near the inter-
section of the crack front and the free surface, the asymptotic
nature of the stress components is as follows �18–21�.

�ij = ��gij��,�,� �17�

where gij are dimensionless functions defined in the spherical co-
ordinates �=�r2+z2, =tan−1�r /z�, having the origin at the inter-
section of the crack front and the free surface. The value of the
index � depends on the Poisson’s ratio and, in fact, deviates very
little from −0.5 �−0.5���−0.332 for 0���0.5� �18,19�. The
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local stress intensity factor varies along the z axis as z��+1/2� and
will therefore become zero on the surface �z=0� and the stress
components ��zz ,�zr ,�z�� vanish. This does not imply that the in
plane stress components ��rr ,��� ,�r�� also vanish on the surface
�18,19�. Nakamura and Parks �20,21� have carried out a detailed
investigation on the behavior of the stresses near the intersection
of the crack front and the free surface using finite element analy-
sis. Their study for opening mode cracks �20� indicates that the
corner singularity field exists within a spherical radius of � /h
=0.03, h being the thickness of the plate. They have also defined
a corner stress intensity factor and demonstrated how it is related
to the classical SIF. The region of existence of the corner singular
stress field being so small in homogeneous materials, we will
make the assumption that the elastic gradients will not alter either
the character of the corner stress field or the region of its influence
in the case of graded materials. Within the region of existence of
the corner singularity, the stress field satisfies the traction free
conditions on the end faces. To the best of our knowledge, there
are no studies that address in detail the state of the stress outside
this region on the surface.

4 Experimental Determination of SIF Under Pure
Bending

In general, the asymptotic expansion of the stress field is used
to determine the fracture parameters from the experimental data.
In the present case, this would mean determining the functions
�1�Bn�z� for an opening mode problem. The use of the stress field
given in Sec. 2 to determine the SIF for a cracked transversely
graded plate subjected to bending is demonstrated in this section.

4.1 Preparation of Transversely Graded Plate. The trans-
versely graded plate was prepared as a particulate composite with
continuously varying volume fraction of filler particles along the
thickness. Solid A-glass spheres of average diameter 60 �m were
used as filler material in epoxy resin �LY556 supplied by Vantico
Performance Polymers Ltd., India� matrix. LY556 is a medium
viscosity resin, which can be cured by the addition of the hardener
HY951 and has a relatively shorter gelation time of 40 min. Alu-
minum molds, having the dimension 200�40�25 mm3, were
used for casting the graded plate. A mixture of epoxy resin and
appropriate amount of glass bead was first prepared. The mixture
was degassed in a vacuum chamber to remove any entrapped air
bubbles and then 10% w /w hardener was added and gently mixed.
Simultaneously epoxy resin mixed with 10% w /w of hardener
was poured into the aluminum mold. After 20 min, the mixture of
epoxy resin and glass beads was poured into the mold. Due to the
higher density, the glass particles will settle down at the bottom of
the mold. Once the particles had completely settled, the mold was
sealed from the top, flipped upside down, and left in that position
for 36 h.

Glass beads have a higher specific gravity of 2.2 as compared to
1.17 for the epoxy resin. When the mold is flipped upside down,
the top layer of the mixture, which is rich in glass beads, starts
moving down due to its higher specific gravity. Simultaneously,
the resin starts gelling and offers more resistance to the settling of
the glass beads. This results in a casting with a glass bead rich
region, a resin rich region, and an intermediate region with con-
tinuously varying glass bead content. The sides of the mold were
coated with grease to obtain smooth surface and to facilitate easy
removal of the cast specimen. The specimens were postcured in an
air circulating oven for 4 h at 100°C.

4.2 Characterization of the Transverse Elastic Gradient.
Since the glass beads have higher specific gravity than that of the
epoxy resin, the density of the plate increases in the direction of
increasing glass bead content. In order to determine the variation
of density along the thickness of the specimen, 1 mm thick slices
were cut along the direction of the gradient. The density of these
samples was measured by hydrostatic weighing, and the density

profile of the specimen was determined. The spatial variation of
glass bead volume fraction was calculated from the density profile
using the rule of mixtures. The variation of glass bead volume
fraction along the thickness of a typical sample is shown in Fig. 2.
Evidently, in the middle region �3–15 mm� of the cast sample,
there is a continuous variation of the glass bead volume fraction
from 5% to 40%.

In order to relate the volume fraction data to the elastic modu-
lus, homogeneous strips having glass bead volume fractions of
10%, 20%, 30%, 40%, and 50% were separately cast. The mold
was rotated at 6 rpm while casting these specimens to avoid set-
tling of the particles. The elastic modulus and Poisson’s ratio for
each glass bead volume fraction was determined following the
ASTM standard testing procedure D638. The elastic modulus in-
creased by three times for a glass bead content of 50% whereas
Poisson’s ratio changed from 0.375 to 0.34. A regression fit relat-
ing the elastic modulus to the volume fraction was derived from
this data, and this relation was used to obtain the elastic gradient
from the volume fraction gradient.

Subsequently, plates of the required thickness were sectioned
out of the appropriate region of the casting. The elastic modulus
profile of a typical specimen is shown in Fig. 3. The elastic gra-
dient for this specimen is over two times across a thickness of
12 mm, and the variation is nearly exponential in nature. For each
casting the density and volume fraction profile was characterized,
as mentioned above, and it was observed that the method of pre-
paring the graded sheet is fairly repeatable. An edge notched
specimen of span 140 mm and width of 40 mm was prepared. A
0.25 mm wide notch of length 12 mm was cut using a diamond
saw. A sharp crack was initiated from the notch tip by forcing a
sharp razor blade into the notch. The final crack length was
14 mm resulting in an a /W ratio of 0.35.

5 Experimental Details
As there is no theoretical expression relating the far-field load-

ing and the SIF for transversely graded material, the SIF has to be

Fig. 2 Variation of glass bead volume fraction along the
thickness

Fig. 3 Elastic modulus profile of the transversely graded plate
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obtained from the measurement of the crack-tip fields. There are
several techniques, which are used to measure the local crack-tip
fields �24–29�. The SIF is then calculated by fitting the theoretical
near-tip field to the experimental data. Photoelasticity and coher-
ent gradient sensor �CGS� are the two full field techniques com-
monly used to measure the mechanical fields near the crack tip. In
the transmission mode, these techniques are sensitive to the stress
field, which in the case of a transversely graded material will vary
along the thickness. Such transmission techniques can, therefore,
capture only the integrated �through the thickness� effect and may
not resolve the SIF variation through the thickness in real time.
Stress frozen methods have been successfully used in the past �24�
for determining the SIF variation through the thickness for ho-
mogenous materials. However in the present case, the graded
specimen is not transparent and hence precludes the use of any
optical technique in the transmission mode.

Measurements, therefore, are possible only from the surface
and hence at most the value of the SIF at the two surfaces can be
determined. Photoelasticity and CGS can be used in reflection
mode as well. In the case of reflection CGS, the technique mea-
sures the in plane gradient of the out of plane deformation �25,26�.
Unlike plane problems, the displacements in the present case may
vary along the thickness of the plate; and therefore, relating the
SIF to the in plane gradient of the out of plane displacement on
the surfaces is not as straightforward as in the case of homoge-
neous materials. Reflection photoelasticity was not contemplated
for the present material as the fracture initiation toughness at the
epoxy side of the specimen is small �0.65 MPa�m�; and hence,
the level of SIF that can be applied may not be high enough to
produce sufficient number of fringe orders in the photoelastic
coating. Furthermore, photoelastic coatings typically have an elas-
tic modulus comparable to epoxy and will bring in issues related
to reinforcement effects.

The application of strain gauges to measure SIF has been dem-
onstrated successfully for plane cracks in homogeneous materials
�27,28�. Given the simplicity and noninvasiveness of this tech-
nique, strain gauges were used in the present study to evaluate the
SIF on the two surfaces of the specimen, henceforth referred to as
the epoxy rich side �lower modulus, z=0� and glass bead side
�higher modulus, z=h�. By applying stress transformation law, a
three term expansion of the stress components ��xx, �yy, and �xy�
for opening mode loading can be obtained from Eqs. �12�–�15� as
follows.

�xx = C1�z�r�−1/2� cos
�

2
�1 − sin

�

2
sin
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2
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2
�1 + sin2 �

2
�

�yy = C1�z�r�−1/2� cos
�

2
�1 + sin

�

2
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2
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2
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2
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3�

2
+ C3r�1/2� cos2 �

2
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�
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The functions Cn�z� of Eq. �18� are related to the functions
�1�Bn�z� as follows:

C1�z� = − 2
�1�B1�z�E�z�

�1 + ��
, C2�z� =

�1�B2�z�E�z�
�1 + ��

,

C3�z� = 6
�1�B3�z�E�z�

�1 + ��
�19�

Using Eq. �13� we will get C1�z�=k1�z� /�2
 where k1�z� is the
opening mode SIF, which is a function of z. For a strain gauge
oriented at an angle � with the x-axis and located at position �r ,��
on the surface �z=0 or h�, using Eq. �18�, a three term represen-
tation of the strain along the gauge can be written as

2��G = C1�� cos
�
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−

1

2
sin � sin

3�

2
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+
1

2
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2
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2
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1

2
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�20�

where �= �1−�� / �1+��. By choosing the angles � and � such that
cos 2�=−� and tan�� /2�=−cot 2�, we can eliminate the effects
of the terms corresponding to C2 and C3, and the SIF can be
calculated from the strain directly using the following relation
�27�.
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k1

�2
r
�� cos

�

2
−

1

2
sin � sin

3�

2
cos 2�

+
1

2
sin � cos

3�

2
sin 2�� �21�

In the context of the present study, Cn in Eq. �20� indicates the
value of the function Cn�z� on the surface �z=0 or h� on which the
gauge is placed. It should be noted that in writing Eq. �20� we
have used the condition that the stresses ��zz, �xz, and �yz� are
zero on the surfaces and the in plane stresses ��xx, �yy, and �xy�
have the structure given in Sec. 2. As discussed in Sec. 3, the
stress field given in Sec. 2 does not satisfy the traction free con-
dition on the surfaces, which is the case even for homogeneous
materials. However, there are several studies that have success-
fully demonstrated that the SIF can be evaluated accurately by
making measurements from the surface using optical techniques
or strain gauges for homogeneous materials �25–29�. In these
studies, the experimental data used to calculate the SIF are invari-
ably taken from a region not too close to the crack tip thereby
avoiding the region of the corner singular stress field and the 3D
effects. These studies, however, make the tacit assumption that in
the region from which the data are collected, the in plane stress
components ��xx, �yy, and �xy� have the structure given by Will-
iam’s expansion �23�. In the present study also, we make the same
assumptions with the exception that the constants in Eq. �20� have
different values on the two surfaces �z=0 and h�.

A single edge notched �SEN� specimen was subjected to four-
point bending in the plane of the plate using a universal testing
machine, as shown in Fig. 4. Two strain gauges were installed at a
radial distance of 3h /4 from the crack tip at the appropriate angles
calculated, as mentioned earlier. The angles � and � were
55.1 deg and 58.8 deg for the epoxy rich side and 58.3 deg and
59.6 deg for the glass bead rich side. The load was recorded using

Fig. 4 Single edge notched plate subjected to four-point
bending
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a 1000 N load cell and an Ectron 530 amplifier was used to con-
dition the strain signals. The variation of the strain on epoxy rich
side ��E� and on the glass bead side ��G� as a function of the
applied bending moment, shown in Fig. 5, indicates that the two
strains are nearly equal and vary linearly with the applied bending
moment. In the case of a transversely graded plate subjected to out
of plane bending or in plane stretching, there will be coupling
between these two modes of deformations, and the magnitude of
the strains on the surfaces of the plate will not be equal. In the
present case, the fact that the two strains are equal �see Fig. 5�
indicates that the plate bends exclusively in the plane of the plate.
The same behavior can be expected for a thick transversely graded
plate �h�12 mm� when the plate is subjected, bending, as shown
in Fig. 4.

The SIF calculated from the strains using Eq. �21� is shown in
Fig. 6 as a function of the applied bending moment. It can be
noticed that the SIF, KIG on the glass bead side �stiffer side� is
nearly two times that of the SIF, KIE on the epoxy side. The SIF,
KIH for a homogeneous material, calculated using the plane solu-
tion �30�, for the same bending moment is also shown in Fig. 6 for
comparison. It can be noticed that KIE is 25% less than KIH
whereas KIG is 50% higher than KIH.

As mentioned in Sec. 5, when the crack front intersects the free
surface at an angle of 90 deg, the inverse square root singular
stress field is not valid on the free surface and the SIF on the
surface should be theoretically zero for an opening mode crack
�11–13,18–20�. The SIF calculated using the classical crack-tip
fields from the experimental data obtained from the surface does
not reflect this behavior �25–29�. We believe the reason for this to
be the following. The corner singularity field exists in a very small
zone �13,20�, and the experimental data are usually collected from
a region �r�0.5h�, which is outside this zone. In this region, the
classical fields can represent the stress/displacement field reason-

ably well. Furthermore, when a natural crack is extended from a
notch, as in the present case, the crack front will not be perpen-
dicular to the free surface. It is reasonable to expect that the ex-
tended crack front will intersect the free surface at an angle that
will preserve the inverse square root singular field on the surface
�22,31�. Thus for such natural cracks, the use of the classical fields
can be expected to provide good estimate of the SIF. For homo-
geneous materials, it has been reported in earlier studies �27,28�
that the single strain gauge method of measuring SIF underesti-
mates the SIF by as much as 12% in comparison to the theoretical
SIF. We believe that the SIF reported in the present study will also
have similar levels of error. However, this error will be the same
for the SIF calculated on either faces of the graded plate; and
therefore, the conclusion that the SIF varies by a factor of 2 across
the plate thickness remains valid.

Graded materials used in high temperature applications typi-
cally have ceramic on one face and metal on the other. The results
of this investigation point out that for a through thickness crack
with the crack front along the direction of the gradation and sub-
jected to bending, the SIF on the ceramic side can be considerably
higher than that on the metallic side especially when the ceramic
side modulus is higher than that on the metallic side. Ceramics, in
general, have low fracture toughness; and hence, this increase in
the SIF due to gradation can further reduce the fracture tolerance
of ceramic-metal graded materials subjected to in plane bending
especially when the ceramic side modulus is higher than that on
the metallic side.

6 Conclusions
The structure of the near-tip stress field for a crack in a graded

material oriented such a way that the elastic properties vary along
the crack front was obtained through eigenfunction expansion.
The results of this part of the study indicated that for exponential
gradation of elastic modulus, the structure of the first three terms
�r�−1/2�, r0, and r1/2� in the expansion of the stress field is not
affected by the transverse elastic gradient for opening mode con-
ditions. An edge cracked plate with near exponential variation of
the elastic modulus along the thickness was prepared and was
subjected to pure bending. The strains near the crack tip on the
two faces of the graded plate were measured using strain gauges.
The SIF on the faces of the plate was calculated from the mea-
sured strains. The results indicated that the SIF on the stiffer face
of the plate can be as much as two times that on the compliant
face for the gradation and loading considered in this study.

Appendix
For n=2,

f2 = �1�B2�z�cos 2� + �1 − 2���1�B2�z� − ��1�A0�
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Fig. 5 Strain on the epoxy side „E… and glass bead side „G… for
edge crack subjected to pure bending

Fig. 6 SIF on the epoxy side „E… and on the glass bead side
„G… for an edge crack subjected to pure bending. The SIF for a
homogeneous material „H… is also shown for comparison.
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On the Magnetic Field Effect in
Electroconductive Plates Under
Nonconservative Loading
This work investigates the behavior of an electroconductive plate under the action of a
nonconservative load and subjected to a transversal magnetic field. The governing equa-
tion of the bending vibrations of an electroconductive plate, subjected to a transverse
magnetic field and a follower type force at one edge, is presented. The assumption of an
elongated plate leads to a simplified equation, which is conveniently written in dimen-
sionless terms. For a cantilevered configuration, the characteristic equation relative to
the magnetoelastic modes of vibration of the system is derived. Approximate solutions
based on Galerkin method and an adjoint formulation are also presented and compared
with the semi-analytical results. Root loci plots are computed as a function of the proper
dimensionless parameters. The behavior of the system is very similar to the one exhibited
by other structures subjected to nonconservative loads when damping is present. A re-
laxed definition of stability is used to regain continuity in the instability envelope.
�DOI: 10.1115/1.3005573�

1 Introduction
The instability of elastic systems, such as columns, plates, and

cylindrical curved shells, subjected to mechanical nonconserva-
tive loads has been widely studied. Since its first appearance, rep-
resented by the problem of Beck’s column �1�, a vast literature
dealing with the argument flourished. The books by Bolotin �2�,
Ziegler �3�, and Leipholz �4� thoroughly addressed this issue. Fur-
thermore, several review papers have also been written on the
subject; see, for example, the detailed one by Langthjem and Sug-
iyama �5�. For a thorough critical review of the dynamic stability
of structures under the action of “follower type” forces, the reader
is referred to the review by Elishakoff �6�. Such studies have
found application in the design of many engineering structures
and, in particular, in the dynamics of space structures �e.g.,
Higuchi and Dowell �7��.

It is well known that the dynamic behavior of structures sub-
jected to nonconservative loads can be largely affected by the
presence of damping terms. The destabilizing effects of mechani-
cal damping in elastic and viscoelastic structures subjected to fol-
lower type loads have also been studied in detail. As highlighted
first by Ziegler �8�, paradoxical results can be found, where, for
example, an infinitesimal small damping has a finite destabilizing
effect. This phenomenon is still object of investigations. Much
emphasis has been given to the mathematical aspects of the eigen-
values discontinuity at zero damping; see, for example, the works
by Seyranian �9�, Seyranian and Kirillov �10�, and Kirillov and
Seyranian �11�. From a more physical perspective, Semler et al.
�12� analyzed the simple system of Ziegler’s �8� double pendu-
lum, while Sugiyama and Langthjem �13� considered the continu-
ous example of Beck’s �1� column. Experimental verifications of

such a destabilizing effect can be found in the references listed in
the review paper by Langthjem and Sugiyama �5�.

On the other hand, the damping character of a magnetic field in
electroconductive thin walled plates and shells has been revealed
in several studies, as is reported by Ambartsumian et al. �14� and
in the review paper by Ambartsumian �15�. The interaction be-
tween magnetic fields and conducting elastic solids is important in
several practical applications. In the field of nondestructive testing
technologies, this principle is exploited to detect defects and
cracks, and it may be used in a structural health monitoring frame-
work. It is also relevant to mention that it is possible to measure
stress distribution through measurements of an electromagnetic
field at a distance from an elastic body. Furthermore, in micro-
electromechanical systems �MEMSs�, such interactions need also
to be analyzed �16�.

The present work takes advantage of the previous literature,
investigating the behavior of an electroconductive plate subjected
to a follower load and under the effect of an external transversal
magnetic field.

The rest of the paper is organized as follows. Section 2 presents
the mathematical modeling with the proper governing equation,
along with selected solution methodologies. Section 3 presents
detailed results in the form of root loci plots, with discussions. In
particular, the need of a relaxed definition of stability is high-
lighted. Finally, pertinent conclusions are presented. The Appen-
dix reports the coefficients of the polynomials used for the ap-
proximate solutions obtained by means of trial functions.

2 Mathematical Modeling

2.1 Magnetoelastic Governing Equations. A thin electro-
conductive plate is considered in this analysis. As shown in Fig. 1,
the plate is clamped on one side, and subjected at the opposite
edge to a follower type load, applied tangentially to the deflected
surface. A constant external magnetic field acts transversally on
the plate. The force is characterized by the load per unit surface Q
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�taken positive if compressive, as shown in Fig. 1�, while the
magnetic field is described by the magnetic field induction B0.
The reference system is shown in Fig. 1.

The governing dynamic equation for the plate bending vibra-
tions, taking into account the follower type load, can be written as

D�4w + 2Qh
�2w

�x2 + 2�h
�2w

�t2 = F �1�

Herein, w�x ,y , t� represents the plate middle plane normal dis-
placements, 2h is the thickness of the plate, D=2Eh3 /3�1−�2� is
the plate flexural stiffness, E and � are the Young modulus and
Poisson ratio, respectively, and � is the bulk density of the plate
material. In addition, F is the electromagnetic load due to the
interaction of the external magnetic field with the electroconduc-
tive plate. Using the electrodynamic theory of deformable bodies
and the hypothesis of magnetoelasticity of thin bodies, as re-
ported, for example, by Ambartsumian et al. �14� and by Ambar-
tsumian �15�, the electromagnetic load F through the thickness
can be written as

F =�
−h

h � fz + � �fx

�x
+

�fy

�y
�z	dz �2�

where

f = fxi + fyj + fzk =
1

�
�� �u

�t
� B0� � B0	 �3�

In Eq. �3�, � is the electroresistivity of the plate material and B0 is
the magnetic field induction. The displacement vector of the plate
points u=uxi+uyj+uzk can be written, according to the assump-
tions of Kirchhoff’s plate theory, as

ux�x,y,z� = − z
�w

�x
�4a�

uy�x,y,z� = − z
�w

�y
�4b�

uz�x,y,z� = w�x,y� �4c�

By considering B0=−B0k, this results in

F =
2h3B0

2

3�

�

�t
�2w �5�

Consequently, Eq. �1� can be rewritten as

D�4w + 2Qh
�2w

�x2 + 2�h
�2w

�t2 −
2h3B0

2

3�

�

�t
�2w = 0 �6�

In the absence of magnetic field, that is, when B0=0, the prob-
lem reduces to the well known nonconservative stability problem
of Beck’s column �1�, where the follower force has a destabilizing

effect on the structure.
On the other hand, in the absence of the pressure load, that is,

Q=0, this problem has been studied by Ambartsumian et al. �14�,
where the stabilizing damping character of the magnetic field has
been highlighted. In this case, and for a plate simply supported on
the four edges, solutions of Eq. �6� are in the form

w�x,y,t� = w0e�t sin�px�sin�qy� �7�

with p= ��n� /a and q= ��m� /b. Consequently, the magnetoelastic
complex frequencies � of the plate can be readily found as

� = − � � 
�2 − �0
2 �8�

having introduced the parameters

� =
h2B0

2�p2 + q2�
6��

, �0
2 =

D�p2 + q2�2

2�h
�9�

For � /�0	1, that is, for B0	 �12E��2 / �h2�1−
2���1/4, under-
damped vibrations are found, while for � /�0�1, and conse-
quently B0� �12E��2 / �h2�1−
2���1/4, an overdamped behavior is
experienced. In the latter case, the roots tend to the origin of the
complex plane for increasing values of � /�0 �and hence B0�. This
is shown in the form of a root loci plot in Fig. 2, which reports the
real and imaginary parts of the dimensionless frequency � /�0 as
a function of the ratio � /�0.

For an elongated cantilevered plate, investigations accounting
for both the effects of the follower force and the magnetic field on
the stability of the system are presented, along with an under-
standing of their mutual interactions. Under this assumption,
b�a, and all partial derivatives with respect to y are negligible,
so that Eq. �6� becomes

D
�4w

�x4 + 2Qh
�2w

�x2 + 2�h
�2w

�t2 −
2h3B0

2

3�

�3w

�t�x2 = 0 �10�

Equation �10� can be solved by separating the time and spatial
variables as

w�x,t� = U���e�t �11�

If a dimensionless coordinate �=x /a is introduced, the governing
equation can be recast in dimensionless terms as follows:

d4U

d�4 + �q − ��
d2U

d�2 + �2U = 0 �12�

where q, , and � are dimensionless parameters, defined as

Fig. 1 Cantilevered panel under in-plane follower load and
transverse magnetic field
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Fig. 2 Root loci plot for a simply supported electroconductive
plate in a transversal magnetic field for different values of � /�0
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q =
3�1 − 
2�a2Q

Eh2 �13a�

 =
hB0

2
1 − 
2

�
3E�
�13b�

� =
�a2

h

3��1 − 
2�

E
�13c�

The parameters q and  are related to the follower force and the
magnetic field, respectively, while � is a linear function of the
complex frequency �, and thus its real part is directly related to
the stability of the system.

For a cantilevered plate with a follower force, the boundary
conditions that accompany Eq. �12� are

U�0� = 0 �clamped side, � = 0� �14a�

dU�0�
d�

= 0 �clamped side, � = 0� �14b�

d2U�1�
d�2 = 0 �side with follower load, � = 1� �14c�

d3U�1�
d�3 − �

dU�1�
d�

= 0 �side with follower load, � = 1�

�14d�

As a remark, the follower nature of the force is such that it does
not appear in the boundary conditions, especially in Eq. �14d�.
This, in fact, describes in dimensionless terms the shear at the free
edge of the plate, which is not affected by the follower load, since
the latter is by definition always tangential to the deflected free
surface.

The general solution of the magnetoelastic governing equation,
Eq. �12�, can be expressed in terms of complex trigonometric
functions as

U��� = C1 sin�p1�� + C2 cos�p1�� + C3 sin�p2�� + C4 cos�p2��
�15�

where p1 and p2 are functions of �, defined as

p1 = 1
2 �
�q − �� + 2� + 
�q − �� − 2�� �16a�

p2 = 1
2 �
�q − �� + 2� − 
�q − �� − 2�� �16b�

The coefficients Cis in Eq. �15� can be obtained applying the
boundary conditions of Eqs. �14�, leading to a system of four
linear homogeneous equations. The nontrivial solution is sought
by imposing the determinant of the matrix of coefficients equal to
zero. After some algebraic manipulations, the following character-
istic equation in the dimensionless variables q, , and � is ob-
tained:

2q� + 4�2 − 2q2 + �� − 1���q − �� − 2��cos 
�q − �� + 2�

+ �� + 1���q − �� + 2��cos 
�q − �� − 2� = 0 �17�

Equation �17� yields infinite solutions for �, corresponding to
the infinite magnetoelastic complex frequencies � of the con-
tinuum structure. To assure stability, all the �s need to be
checked. From a practical viewpoint, it is enough to track the first
two magnetoelastic modes and to infer the overall stability of the
system from the position of the roots of these first modes. This has
been mathematically proven in the case of Beck’s column prob-
lem by Carr and Malhardeen �17�, whose paper has appeared al-
most three decades after the original brief report of Beck �1�.
Before proceeding with the solution of Eq. �17�, it is viable to
recall that its zeros in the complex plane will appear as complex

conjugate pairs. This can be directly inferred from the physical
meaning of the response, which in order to be real needs the
counter-rotating pair e�t and e�̄t, for every �.

It can be observed that two purely real solutions of Eq. �17�
exist, and one of them is positive. These solutions have no physi-
cal meaning and are related to a further rank loss of the matrix of
coefficients coming from the boundary conditions, as it is ex-
plained next. It can be shown �by simple substitution� that if p1
= p2, then �=q / �+2� is a solution of Eq. �17�. This value of � is
real and positive, but it does not involve any instability, that is, a
trivial solution is encountered. In fact, it is possible to show that
the constants in Eq. �15� become C3=−C1 and C4=−C2, so that
the corresponding eigenfunction vanishes identically, as U���
=C1 sin�p1��+C2 cos�p1��−C1 sin�p1��−C2 cos�p1��=0. The
same is observed when p1=−p2, which implies �=q / �−2�.

2.2 Solution Using an Optimization Approach. Finding the
zeros, in �, of Eq. �17� can be reformulated as an optimization
problem, so that a general minimization algorithm can be utilized.
In a straightforward way this is obtained by defining the objective
function Fcost as

Fcost = �2q� + 4�2 − 2q2 + �� − 1���q − ��

− 2��cos 
�q − �� + 2� + �� + 1���q − ��

+ 2��cos 
�q − �� − 2�� �18�

Clearly, when Fcost��̄�=0, the characteristic equation is also satis-

fied and �̃ is a local minimum of Fcost, and vice versa. Therefore,
the problem becomes that of finding the minima of Fcost, having
as free variable the complex �=�R+ i�I. For convenience, this can
be rewritten using two real variables, namely, the real and imagi-
nary components �R and �I. The search of the minima can be
restricted to positive �I, since all the roots are complex conjugate.

The minimization can be achieved using a standard optimiza-
tion code handling multiple variables. In this case, the MATLAB®
routine fminsearch �18�, which implements the Nelder–Mead
simplex method, is used. Since multiple minima are of interest, as
well as coalescence of minima, special care needs to be utilized.
The following procedure is used.

• For a given value of q and , a contour plot of Fcost is
obtained, with contour lines logarithmically spaced.

• In order to return the local minimum of interest, an initial
guess for � is specified.

• The minimization code is run and the solution is shown on
the contour plot.

• A variation of either q or  is introduced, and a new mini-
mum is sought using the previous value as initial guess for
�.

Although such a procedure may appear to be lengthy, it pro-
vides a continuous check on the precise and correct tracking of the
magnetoelastic roots. When necessary, for example when coales-
cence is present, an artificial bias in the direction of interest is
introduced in the starting point for the optimization.

This approach, involving recasting the problem in optimization
terms and using a general purpose minimization code, has proven
to work well for the problem of interest. It does not require any
additional mathematical steps, and it is rather straightforward and
independent of the form of the characteristic equation. Further-
more, direct control is given to the user on the tracking of the
modes.

2.3 Solution Using Galerkin Method. Approximate solu-
tions to Eq. �12�, together with the boundary conditions specified
in Eqs. �14�, can also be sought using Galerkin method. The ap-
proach follows the one presented by Forray �19�. An approximate
solution of the form
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Un = �
k=1

n

ak�k��� �19�

can be found, where the trial functions �k��� are chosen as to
satisfy the boundary conditions. Then, defining the differential
operator L�·� from Eq. �12�, the unknown coefficients ak can be
obtained imposing the orthogonality of the residual to the trial
functions, that is,

�
0

1

L��
j=1

n

aj� j�����k���d� = 0, k = 1,2, . . . ,n �20�

A homogeneous linear system in ak is found, and singularity of
the matrix of coefficients needs to be imposed.

In this case, two polynomial trial functions are chosen:

�1��� = 3�2 + ���4 − 8�3 + ���3 + 6�6 + ���2

�2��� = 6�6 + ���5 − 15�8 + ���4 + 10�12 + ���3 �21�
Carrying out the integrations and imposing the zero determinant
of the matrix of coefficients, a polynomial equation of degree 8 is
found in � as

c8�8 + c7�7 + c6�6 + c5�5 + c4�4 + c3�3 + c2�2 + c1� + c0 = 0

�22�

The coefficients c0–c8 are given in the Appendix, in Eqs.
�A1a�–�A1i�. When =0, the polynomial in Eq. �22� becomes a
biquadratic equation in �, and a closed-form formula for the roots
is therefore available. On the other hand, when �0, a numerical
approach needs to be utilized to find the roots of Eq. �22�.

Convergence issues may arise when using non-orthogonal trial
functions; in this specific case, however, it is observed that the
approximate eigenvalues compare very well with the exact ones,
as shown in Sec. �3�. A set of orthogonal functions �k��� can be
constructed from a set of linear independent functions fk��� using,
for example, Gram–Schmidt technique, by taking �1= f1, �2= f2
−�1�1 , f2� / �1 ,�1�, �3= f3−�1�1 , f3� / �1 ,�1�−�2�2 , f3� /
�2 ,�2�, and so on.

2.4 Solution Using Adjoint Problem Formulation. A more
powerful method to obtain approximate solutions of the boundary
value problem specified in Eqs. �12�–�14� is based on the concept
of adjoint system, which enables to build an appropriate varia-
tional approach; see, for example, the notes of Pedersen �20�.
Herrmann and Nemat-Nasser �21� showed how this method works
for Beck’s column, whose adjoint problem is Reut’s column. A
similar analysis was also presented by Prasad and Herrmann �22�.

The boundary value problem can be cast as

L̂�U,�� = 0 �23�

where the linear differential operator L̂ operates on the eigenfunc-
tion U���. This, together with the boundary conditions, constitutes
a non-self-adjoint boundary value problem. The corresponding ad-

joint system operator L̂* can be defined via a function V��� using
the internal product as

L̂�U,��,V� = L̂*�V,�
*
�,U� �24�

The function V��� is a solution of the adjoint system

d4V

d�4 + �q − �
*
�
d2V

d�2 + �
*
2V = 0 �25�

with boundary conditions

V�0� = 0 �26a�

dV�0�
d�

= 0 �26b�

d2V�1�
d�2 + qV�1� = 0 �26c�

d3V�1�
d�3 + �q − �

*
�
dV�1�

d�
= 0 �26d�

For linear differential boundary value problems of the type

L̂�U�=�U, when the eigenvalues � are not involved in the bound-
ary conditions, it is well known that the original and adjoint sys-
tems have the same set of eigenvalues, while the eigenvectors Un
and Vm are orthogonal for n�m. Prasad and Herrmann �22�, con-
sidering the stability problem of elastic continua subjected to non-
conservative forces, proved that the eigenvalues of the original
and the adjoint systems are identical, based on assumptions of
completeness of eigenfunctions of the original system. In our
case, the eigenvalues appear in the equations and in the boundary
conditions as � and �2; therefore, it may be more straightforward
to prove the identity of the eigenvalues by direct method. The
general solution of Eq. �25� can be expressed in terms of complex
trigonometric functions as

V��� = C1* sin�p1*�� + C2* cos�p1*�� + C3* sin�p2*��

+ C4* cos�p2*�� �27�

where

p1* = 1
2 �
�q − �

*
� + 2�

*
+ 
�q − �

*
� − 2�

*
� �28a�

p2* = 1
2 �
�q − �

*
� + 2�

*
− 
�q − �

*
� − 2�

*
� �28b�

To obtain the characteristic equation, a nontrivial solution for C1*,
C2*, C3*, and C4* needs to be sought, using the boundary condi-
tions of Eqs. �26a�–�26d�. Imposing the nontrivial solution to the
corresponding homogenous system yields the characteristic equa-
tion

2q�
*

+ 4�
*
2 − 2q2 + �

*
� − 1���q − �

*
�

− 2�
*
�cos 
�q − �

*
� + 2�

*
+ �

*
� + 1���q − �

*
�

+ 2�
*
�cos 
�q − �

*
� − 2�

*
= 0 �29�

which coincides with Eq. �17� of the original boundary value
problem. This concludes the proof. Generalized orthogonality
conditions for the eigenvectors can also be found in this case,
similar to the orthogonality property of modes in linear vibration
theory.

A variational principle can be used to obtain an approximate
solution. Two sets of trial functions, Uk��� and Vi���, satisfying
the boundary conditions of the original and adjoint systems, re-
spectively, can be selected, in the form

U��� = �
m=1

M

CmUm��� and V��� = �
m=1

M

CmVm��� �30�

This allows writing an algebraic equation in terms of � as

det�Akj� = 0 with Akj = L̂�Uk�,Vj� �31�
This approximate method, which uses two sets of trial func-

tions, is usually thought to be more powerful than the commonly
used Galerkin approach presented in the previous section. The
success of this method has been demonstrated in the analysis of
many nonconservative stability systems, as shown by Herrmann
and Nemat-Nasser �21� for Beck’s and Reut’s columns, and by
Ghazaryan and Isabekyan �23� for a current carrying beam sub-
jected to the action of a longitudinal magnetic field, only to name
a few.

In the present case, M =2 is chosen, together with the following
set of functions, satisfying the proper boundary conditions:
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U1��� = 3�2 + ���4 − 8�3 + ���3 + 6�6 + ���2

U2��� = 6�6 + ���5 − 15�8 + ���4 + 10�12 + ���3

�32a�

V1��� = �12 + q2 + 6� − q���4 − 2�24 + 4q + q2 + 8�

− q���3 + �72 + 6q + q2 + 12� − q���2

V1��� = �72 + 6q + q2 + 12� − q���5 − 2�120 + 12q + q2

+ 15� − q���4 + �240 + 16q + q2 + 20� − q���3

�32b�
The trial functions of Eq. �32a� are the same used for the Galerkin
method in Eq. �21�; the same considerations on convergence is-
sues and orthogonalization apply here as well. Substituting the
trial functions in Eq. �31�, a polynomial in � of degree 8 is ob-
tained as

k8�8 + k7�7 + k6�6 + k5�5 + k4�4 + k3�3 + k2�2 + k1� + k0 = 0

�33�

where the coefficients k0–k8 are given in the Appendix, in Eqs.
�A2a�–�A2i�. In this case, as for Galerkin method, a polynomial of
degree 8 is obtained.

3 Results and Discussions
Since parametric analyses varying  are of interest, it is found

convenient to establish first the range of variation of this dimen-
sionless parameter. Assuming 2h=0.01 m, E=70 GPa, �
=2700 kg /m3, �=0.34, �=2.7�10−8 � m, and B0=1 T, a value
of about 7.3�10−3 is obtained for . In the above, typical values
for an aluminum alloy are used for density, Young’s modulus,
Poisson’s ratio, and electrical resistivity. If typical values for cop-
per are used instead, namely, E=130 GPa, �=8900 kg /m3, �
=0.32, and �=1.72�10−8 � m, with the same value of magnetic

field and plate thickness, a value of about 4.7�10−3 is obtained
for . Therefore, for the analyses, an upper bound value of 0.01 is
chosen for . However, because of the quadratic dependency on
the magnetic field B0, in some applications higher values for 
may be experienced.

Three different methods have been presented in the previous
section to solve the equation of motion and hence determine the
stability of the system. They are the ones obtained from the nu-
merical solution of Eqs. �17�, �22�, and �33�, and are referred to in
the following as “exact,” “Galerkin,” and “adjoint” solutions. This
section starts analyzing the different solutions obtained with these
methods. It has to be noted that also the exact solution needs a
numerical approach, as described in Sec. 2.2, so it may be re-
garded also as semi-analytic. Although the roots of the degree 8
polynomials in Eqs. �22� and �33� can be found by carefully using
standard root extraction algorithms, the same optimization-based
approach is used for the Galerkin and adjoint cases as well, to
exploit a common numerical framework.

Figure 3 reports the root loci plot obtained without a magnetic
field, that is, for =0 and for different values of q. All methods
present the coalescence of the first and second modes, leading to
instability. When a magnetic field is introduced, taking, for ex-
ample, =0.01, the root loci plot of Fig. 4 is obtained. In this
case, the coalescence disappears, though the first two modes get
closer and then the first one becomes unstable. The plots are again
very similar for the three approaches.

The Argand diagrams shown in Figs. 3 and 4 are qualitatively
very similar to the ones found for structures subjected to noncon-
servative loads in the presence of damping; see, for example, Ref.
�24�. Zooming in around the Re��� axis, it is possible to see that
the roots cross “gently” into the right hand part of the complex
plane, before diverging sensibly. In other words, the solution stays
close to the Re���=0 line for a quite large range of q before
actually diverging into the positive half-plane. Table 1 reports the
values of q for which a root � has a positive real part for a range
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of values of . The value of 20.05 obtained with the semi-
analytical solution is exactly the same found by Beck in his origi-
nal paper �1�. In this case, the weighted residual methods return
slightly greater estimates for q; however, this overestimation trend
does not hold in general; see, for example, the work of Prasad and
Herrmann �22�.

It is interesting to observe that the qcross value does not depend
on ; if this is different from zero, that is, for the whole range
10−10��10−2, the same result is obtained. This implies that a
magnetic field, of arbitrary small strength, seems to have a finite
effect on the load capability of the structure. Values of 	10−10,
but different from 0, are not reported in Table 1, since a numerical
dispersion of the root loci becomes prevalent. Figure 5 shows this
issue for =10−14, adopting the exact method to find the eigen-
value �1. The same phenomenon is observed also with the other
two methods investigated in this work.

In order to present the results as a function of the parameter q,
it is convenient to plot the real and imaginary parts of �1 and �2
versus q for different values of . This approach of finding the
complex frequencies—functions of several parameters—
introducing one variation at the time is quite common in dynamic
stability theory �see, for example, the recent book by Seyranian
and Mailybaev �25��. Also the coalescence of two modes observed
in this case is often encountered in the field. Figure 6 reports the
real and imaginary parts of �, obtained using the semi-analytical
method, without any magnetic field, that is, =0. A vertical line is
drawn when the real part of �1 becomes positive. Figure 7 reports
the same solution as a function of q with a magnetic field, where
=0.01 is considered. The real/imaginary plots versus q are not
reported for the intermediate cases of 0		0.01, since they are
very much like Figs. 6 and 7.

Very similar results have been found in previous works that
examined the damping influence �not due to a magnetic field� on
the stability of structures under nonconservative forces. The re-
sults reported above can be summarized as follows. It is observed
that a small value of magnetic field has a destabilizing effect, with
a maximum allowable compressive load about half the one carried
without a magnetic field. This is obtained consistently using a
semi-analytical approach, Galerkin method, and an adjoint formu-
lation. Furthermore, when the magnetic field tends to very small

values, still there is a pair of roots of the system that exhibit a
positive �although small� real part. The famous �and widely de-
bated� paradox of the destabilizing effect of damping, first pre-
sented by Ziegler �8�, is therefore encountered in this case. There
have been different approaches, also supported by experimental
verifications, to resolve the paradox, as reported in the review
paper by Langthjem and Sugiyama �5�, for example. What is
needed is basically a relaxed definition of stability. Lyapunov’s
definition is based on stability in an infinite interval of time, and
hence it requires the real part of all roots to be nonpositive. Such
a requirement may be too restrictive in some cases, which may
require a new terminology in dynamic stability. This has been
proposed, for example, by Bolotin and Zhinzher �24�, which in-
troduced the notion of “quiet” and “violent” flutters, and by Higu-
chi and Dowell �7�, with their “weak” flutter. The approach
adopted here is similar to the one proposed by this last reference,
and it is preferred for its simple and intuitive physical interpreta-
tion. With this approach, the system is considered stable as long as
all the roots have a real part below a certain threshold, which can
be determined considering the time scales involved in the system,
and, in particular, the lapse of time during which the follower
force is present. A numerical example can be useful to make the
point. The free response of the system is modulated in amplitude

Table 1 Values of q for which Re„�…=0

Exact Galerkin Adjoint

=0 qcross=20.05 qcross=21.65 qcross=21.57
10−10��10−2 qcross=11.57 qcross=12.42 qcross=11.73
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Fig. 5 Zoom of the root loci plot for �=10−14, semi-analytic
solution
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by a factor eRe���t. Therefore, if Re��� is 10−6, then 106 s �that is,
more than 11 days� are needed in order to have an amplification of
the perturbation of about 2.7. It is clear, therefore, how a system
can be considered stable in practice even when it admits roots
with positive �though small� real parts.

As in this analysis the roots are in terms of the dimensionless
parameter �, and not directly in terms of the complex frequency
�, an additional step is required. Using Eq. �13c�, it is possible to
show that � may be considered to be about two orders of magni-
tude greater than �. In fact, taking a=1 m, 2h=0.01 m, �
=2700 kg /m3, �=0.34, and E=70 GPa, it is found that �
�0.064�. If the values �=8900 kg /m3, �=0.32, and E
=130 GPa are used instead, then ��0.0086�. Therefore, �
�102� is a reasonable assumption. Although these computations
are limited in scope, they are reported here to give a feeling of the
numbers that may be actually used in practical circumstances.

With these considerations, the “relaxed” stability of the system
is analyzed, imposing three different thresholds of 10−4, 10−6, and
10−8 on the maximum allowable real part of �, as reported in Figs.
8–10, obtained using the semi-analytical approach, Galerkin
method, and the adjoint formulation, respectively. The outcomes
of the three methods are very much alike, predicting transitions in
correspondence of the same values of , though the actual

asymptotic values on the left and right parts of the plots are dif-
ferent, as noted in Table 1. The continuity character of the dy-
namic instability is regained with such a relaxed definition of
stability, and the paradox that implies a finite loss in load capabil-
ity for an infinitesimal amount of magnetic field is hence elimi-
nated. It is also observed, as expected, that the larger the threshold
on the real part of �, the larger the maximum allowable compres-
sive load for a given magnetic field intensity.

To obtain the results reported in Figs. 8–10, instead of running
a parametric analysis for a set of values of q �as in Figs. 6 and 7,
for example�, the algorithm shown in Fig. 11 is used. This is based
on incrementing the value of q until an instability is found. Then,
a refinement is added stepping back and decreasing the increment
�q, iteratively, until the given precision is obtained. At that point,
the qmax is returned and the routine ends. The “find��” block at the
innermost core of the loop stands for the root finding procedure,
based on a minimization approach, and applies for the three meth-
ods outlined in Secs. 2.2–2.4.

4 Conclusions
The effect of a transversal magnetic field on an electroconduc-

tive plate, cantilevered at one edge and subjected to a follower
force at the opposite edge, has been considered. The magnetoelas-
tic governing equation has been established, combining the for-
mulation of Beck’s column with the formulas coming from the
magnetoelasticity of thin bodies. The formulation has then been
simplified for the case of an elongated plate, and the correspond-
ing equation has been rewritten in dimensionless terms. The prob-
lem has then been solved using three different approaches, a semi-
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analytical formulation, Galerkin method, and an adjoint
formulation. The results of the three methods agree very well on
the character of the instability, and the marginal differences in the
actual values have been highlighted. The Argand plots for selected
values of the magnetic field have been computed for the first two
magnetoelastic roots. It is found that the magnetic field produces
effects comparable to those due to damping. Ziegler’s paradox is
encountered, that is, the maximum allowable compressive fol-
lower force sees a finite drop when an infinitesimal magnetic field
is introduced. A modified definition of stability is used, where the
roots of the system are allowed to have a positive �though small�
real part. With this, the continuity of the instability envelope is
regained.
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Nomenclature
a, b � plate dimensions in the x and y directions, re-

spectively �m�
B0 � magnetic field induction �T�
D � plate flexural rigidity �N m�
E � Young’s modulus of elasticity �N /m2�
F � electromagnetic force per unit area �N /m2�
f � specific electromagnetic force �N /m2�

2h � plate thickness �m�
Q � follower type load per unit area �N /m2�
q � dimensionless load
u � displacement vector of the plate points �m�
w � plate middle plane normal displacements �m�

x, y, z � coordinates along the two sides and the thick-
ness of the plate �m�

�, �0 � components of the magnetoelastic complex
frequencies �rad/s�

 � dimensionless magnetic field
� � electroresistivity of the plate material �� m�
� � dimensionless coordinate, �=x /a.
� � bulk density of the plate material �kg /m3�

 � Poisson’s ratio
� � magnetoelastic complex frequency �rad/s�
� � magnetoelastic dimensionless complex

frequency
���=� /��, ���=�2 /��2 spatial derivatives
�2=�=�2 /�x2+�2 /�y2 Laplace operator
�4= ��2�2=�2 biharmonic operator

Appendix
The coefficients c0–c8 of the polynomial in Eq. �22� are given

as follows:

c0 =
4,478,976

49
q +
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7
q2 +
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7
�A1a�

c1 = 1
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The coefficients k0–k8 of the polynomial in Eq. �33� are given
as follows:

k0 =
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k4 = � 2
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As a remark, it can be easily found that, when =0, the Galer-
kin and the adjoint method yield the same polynomial, since in
that case ki=4ci, for i=0,1 , . . . ,8.
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The characteristics of fluid flow through three porous layers are
investigated. The two outer porous layers are considered to be of
infinite width, while the middle porous layer is assumed to be of
finite width. The mathematical model of the fluid flow in the
middle region can be described as laminar fully developed flow
and is assumed to be governed by Brinkman equations. The flow
through the upper and lower porous media is governed by Forch-
heimer equations. At the two interface regions between the middle
finite width porous layer and the outer infinite porous layers, the
continuity of the velocity and of the shear stress are imposed.
Under these matching conditions, the exact solutions for the set of
equations describing the flow velocity are obtained. It is found
that the flow velocity is affected by two parameters, namely, Rey-
nolds number and Darcy’s number. The effects of these parameters
on the flow velocity profiles through the flow regions are investi-
gated and presented. �DOI: 10.1115/1.2998483�

1 Introduction
The problem of flow through layered porous media finds appli-

cations in various fields of science and engineering. For example,
the flow of ground water, oil, and gas in the ground layers are
typical problems that have been considered by many researchers
such as Allan and Hamdan �1�, Beavers and Joseph �2�, Ford and
Hamdan �3�, Harr �4�, Polubarinova-Kochina �5�, and Vafai and
Kim �6�.

The mathematical model for these types of problems has been
based on Darcy’s law, which, as it is well known, is valid for slow
flow through low permeability media. It ignores inertial effects,
which arise due to the microstructure of the medium and curvilin-
earity of the flow path and ignores the viscous shear effects, which
inevitably arise when a viscous fluid flows near a macroscopic
solid boundary on which a no-slip condition must be imposed. To
account for such effects, one must abandon Darcy’s law in favor
of another flow model. Popular among the models of flow through
porous media are the Darcy–Lapwood–Brinkman �DLB� and the
Darcy–Lapwood–Forchheimer–Brinkman �DFB� models. The
former is applicable when viscous shear effects are important, and
macroscopic inertia is sufficient to describe the flow inertia
through the porous material. The latter model accounts for viscous
shear effects and describes both microscopic and macroscopic in-
ertia in the medium. The flows described by these models are
encountered in various natural, physical, biological, and industrial
settings, �cf. Refs. �7,8�, and references therein�.

The fluid mechanics of the interface region of multilayer flows
has gained interest over the past three decades due to its applica-

tions in various physical settings. These applications include
packed-bed heat exchangers, heat pipes, thermal insulation petro-
leum reservoirs nuclear waste repositories, and geothermal engi-
neering. The problem of two layers flow was investigated by sev-
eral authors. Vafai and Thiyagaja �9� studied the fluid mechanics
of the interface region between a fluid layer and a porous medium.
They presented an analytical solution based on matched
asymptotic expansions for velocity and temperature distributions.
Vafai and Kim �6� adjusted the result of Vafai and Thiyagaja �9�
and used matching conditions on the interface region and obtained
an exact solution for the problem, which depends on Darcy’s
number and Reynolds number that are based on the channel
height. Lately, Allan and Hamdan �1� reviewed the extent of re-
search in these areas. They studied the fluid mechanics of the
interface region between two porous media. An exact solution to
the problem was obtained. The solution obtained depends also on
the Darcy’s number and Reynolds number, which again depend on
the channel height.

Most of the studies in porous media carried out so far have been
based on the Darcy’s flow model, which is an empirical law for
creeping flow through an extended uniform medium. The impor-
tance of the non-Darcian effect was recognized by many authors
�10–12�. Most of these studies dealt with two-channel problems.
In this paper, however, we consider a three-channel problem,
which, to the knowledge of the authors, is being considered for
the first time. We believe that the results of this work will lay the
ground for extensions to the case of more than three layers. We
also investigate the non-Darcian effect on the flow.

In this work, the fluid mechanics of the interface regions be-
tween three layers will be discussed. It is an attempt to shed some
light on the fluid mechanics near the interface between the porous
layers. Two flow configurations will be considered. The first con-
figuration consists of a fluid flow through a porous medium of
finite width, which is sandwiched between two porous layers of
infinite height. The flow in the middle region in this case is gov-
erned by the Brinkman equation �DLB model�, while the flow in
the upper and the lower regions are assumed to be governed by
the Forchheimer model �DFB model�. In the second case, the
middle channel is assumed to be of infinite permeability, and the
same model as in the first configuration for the outer channels. In
both cases, appropriate matching conditions are imposed, namely,
the continuity of the velocity and the shear stress.

The paper is organized as follows. In Sec. 2, the physical set-
tings and the mathematical formulations of the problem are pre-
sented. In Sec. 3, we present the derivation of the exact solutions
for both configurations considered. Section 4 presents the results
obtained. Finally, we close by a summary and conclusion in
Sec. 5.

2 Mathematical Formulation
In this section, we shall present the mathematical formulations

of the model equations governing the three-channel problem de-
picted in Fig. 1, where the middle region �Region I� is of finite
width H, and the upper and lower regions �Regions II and III,
respectively� are of infinite heights. The dashed lines between the
regions represent the interface between the different porous layers.

2.1 Configuration 1. In this case, we consider that the flow in
Region I is governed by the BLB model, and the flows in Regions
II and III are modeled by the BFB model. Let uj, 1� j�3, be the
velocity of the assumed fully developed flow in region j. In Re-
gion I, the flow is governed by the Brinkman equation, which
takes the following form for the configuration at hand:

−
dp

dx
+ �

d2u1

dY2 −
�

k1
u1 = 0 �2.1�

In Regions II and III, the flow is assumed to be one where micro-
scopic inertial effects are important, and hence is governed by
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Forchheimer-type equation, which takes the following form �10�.

−
dp

dx
+ �

d2uj

dY2 −
�

kj
uj −

��F�

�kj

uj
2 = 0, j = 2,3 �2.2�

In Eqs. �2.1� and �2.2�, uj, j=1,2 ,3, are the horizontal velocity
components in Regions I, II, and III, respectively, p�x� is the
pressure, � is the medium porosity, � is the fluid density, kj, j
=1,2 ,3, are the permeabilities of Regions I, II and III, respec-
tively, � is the viscosity constant �we assumed here that �1=�2
=�3=��, and F is the drag coefficient �10�.

The boundary conditions associated with the flow situation are
given the following. At the interface regions �Y =0 and Y =H�, we
assume the continuity of the velocity as

u1�0+� = u3�0−�
�2.3�

u1�H−� = u2�H+�

and the continuity of the shear stress as

du1

dY
�H−� =

du2

dY
�H+�

�2.4�
du1

dY
�0+� =

du3

dY
�0−�

For Regions II and III, we assume that as Y → ��, the flow
velocity approaches the main velocity U�, i.e.,

u2 and u3 → U� as Y → � � �2.5�
The problem can be rendered dimensionless with respect to the

characteristic length H and the characteristic velocity U�. Using
the definitions,

Uj =
uj

U�

, y =
Y

H
, Daj =

kj

H2 , Re =
U�H�

�
, � j =

��FH
�kj

,

j = 1,2,3 �2.6�

where Daj, j=1,2 ,3 refer to the Darcy numbers of Regions I, II,

and III, respectively. Equations �2.1� and �2.2� take the following
dimensionless forms:

− H2

�U�

dp

dx
+

d2U1

dy2 −
U1

Da1
= 0 �2.7�

− H2

�U�

dp

dx
+

d2Uj

dy2 −
Uj

Daj
− Re � jUj

2 = 0, j = 2,3 �2.8�

The boundary conditions given in the system of Eqs. �2.3� and
�2.4� and in Eq. �2.5� take, respectively, the following dimension-
less form:

U1�0+� = U3�0−� � ui3

�2.9�
U1�1−� = U2�1+� � ui2

dU1

dy
�1−� =

dU2

dy
�1+�

�2.10�
dU1

dy
�0+� =

dU3

dy
�0−�

U2 and U3 → 1 as y → � � �2.11�

where ui2 and ui3 are the interface velocities at the upper �Region
II� and lower �Region III� interface regions, respectively.

The pressure terms in Eqs. �2.7� and �2.8� can be eliminated by
considering the fact that Uj→1 and �dUj /dy�→0, j=2,3, as y
→ ��. Following Allan and Hamdan �1�, we find that outside the
momentum boundary layer, Eq. �2.8� becomes

− H2

�U�

dp

dx
=

1

Daj
+ Re � j �2.12�

Using Eq. �2.12� in Eqs. �2.7� and �2.8�, assuming that the pres-
sure term in the middle Region I satisfies Eq. �2.12� with j=2, we
have the following ordinary differential equations governing the
flow in the three layers. For Region I, Eq. �2.7� becomes

0

H

Region II: Upper infinite height porous channel

Region III: Lower infinite height porous channel

Region I: Middle finite height porous channel

+∞

−∞

Y

Y

Fig. 1 A schematic of the flow configuration through three porous layers
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d2U1

dy2 −
U1

Da1
= −

1

Da2
− Re �2 �2.13�

and for Regions II and III, Eq. �2.8� becomes

d2Uj

dy2 =
1

Daj
�Uj − 1� + Re � j�Uj

2 − 1�, j = 2,3 �2.14�

It is thus required to solve Eqs. �2.13� and �2.14� subject to the
continuity of velocities and shear stress at the interface regions at
y=0 and at y=1, and subject to Eq. �2.11�.

2.2 Configuration 2. In the second case, we consider the flow
in the finite height layer �Region I� to be a free fully developed
flow. The other two regions �II and III� are as in Configuration 1.
The flow in region I is then governed by the Navier–Stokes equa-
tion

�
d2uf

dY2 =
dp

dx
�2.15�

where uf is the fluid velocity �the subscript f stands for free�.
Equation �2.15� is obtained from Eq. �2.13� by considering Da1
=� �infinite permeability�. The boundary conditions at the inter-
face regions are given by

uf�0+� = u3�0−�

uf�H−� = u2�H+�
Casting Eq. �2.15� in nondimensional form and using Eq. �2.12�

will result in the following equation for the free fluid flow in the
middle region �Region I�.

d2Uf

dy2 = −
1

Da2
− Re �2 �2.16�

which is associated with the following dimensionless boundary
conditions:

Uf�0+� = U3�0−� � ui3

�2.17�
Uf�1−� = U2�1+� � ui2

Note that the flow equations for Regions II and III are still given
by Eq. �2.14� subject to Eq. �2.17� in addition to Eq. �2.11�.

3 Derivation of the Exact Solutions
In this section we shall derive the exact solutions to the flow

problems in the cases outlines in the previous section.

3.1 Case 1. Consider the configuration presented in the Sec.
2.1. First, it can be easily seen that Eq. �2.13� admits the general
solution.

U1�y� = c1e�1y + c2e−�1y + K �3.1�

where c1 and c2 are arbitrary constants, �1= �1 /�Da1�, and K
= �Da1 /Da2�+Re �2Da1.

Using the fact that U1�0�=ui3 and U1�1�=ui2, the velocities at
the lower and upper interface regions, respectively, we get the
following system of equations for c1 and c2:

c1 + c2 = ui3 − K
�3.2�

e�1c1 + e−�1c2 = ui2 − K

whose solution is

c1 =
ui2 − ui3e−�1 + K�e−�1 − 1�

e�1 − e−�1
�3.3�

c2 =
− ui2 + ui3e�1 − K�e�1 − 1�

e�1 − e−�1
�3.4�

Substituting Eqs. �3.3� and �3.4� into Eq. �3.1� and simplifying
them, we obtain the flow velocity U1�y� in terms of the interface
velocities ui2 and ui3.

U1�y� =
ui2 − K

sinh��1�
sinh��1y� +

ui3 − K

sinh��1�
sinh��1�1 − y�� + K

�3.5�

The interface velocities ui2 and ui3 will be determined by match-
ing the flow velocities and shear stress at the interfaces y=0 and
y=1.

For Region II �and III�, we integrate Eq. �2.14� once we obtain

dUj

dy
= � �Uj − 1��Cj�Uj + Dj� �3.6�

where

Cj =
2 Re � j

3
, Dj = 2 +

3

2 Re � jDaj
, j = 2,3

Further integrating �3.23� and using the fact that lim
y→��

Uj�y�=1,

U3�0�=ui3, and U2�1�=ui2, we obtain the following solutions for
the velocity in Region j �j=2 or 3�:

Uj�y� = − Dj + �Dj + 1��1 + zj�y�
1 − zj�y��2

�3.7�

where

z2�y� = e2e�2�1−y� �3.8�

z3�y� = e3e�3y �3.9�

e2 =
�ui2 + D2 − �D2 + 1
�ui2 + D2 + �D2 + 1

�3.10�

e3 =
�ui3 + D3 − �D3 + 1
�ui3 + D3 + �D3 + 1

�3.11�

� j = �Cj�Dj + 1�, j = 2,3 �3.12�

Now, matching the velocities and shear stress at y=0 and y
=1 leads to the following nonlinear system for the interface ve-
locities ui2 �at y=1� and ui3 �at y=0�.

�C3Da1sinh��1��ui3 − 1��ui3 + D3

= ui2 − cosh��1�ui3 − K�1 − cosh��1��
�3.13�

�C2Da1sinh��1��ui2 − 1��ui2 + D2

= − cosh��1�ui2 + ui3 − K�1 − cosh��1��
Thus by solving simultaneously the system of the two nonlinear

equations given by Eq. �3.13�, one can find the velocities at the
interface regions. The velocity distribution in the porous regions is
given by Eq. �3.5� for Region I and Eqs. �3.7�–�3.9� for Regions II
and III.

3.2 Case 2. Consider the second configuration where the flow
model for Region I is given by Eq. �2.16�.

d2Uf

dy2 = −
1

Da2
− Re �2 �3.14�
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where the subscript f stands for “free” flow, and the flow model
for Regions II and III are the same as in Case 1, i.e., given by Eq.
�2.14� whose exact solution is given by Eq. �3.7�.

The exact solution of Eq. �3.14�, in terms of ui3�Uf�0� and
ui2�Uf�1�, is given by

Uf�y� = −
1

2
	 1

Da2
+ Re �2
y2 + �ui2 − ui3 +

1

2
	 1

Da2
+ Re �2
�y

+ ui3 �3.15�

Matching the interface velocities �Uf�0�=U3�0� and Uf�1�
=U2�1�� and the shear stress �Uf��0�=U3��0� and Uf��1�=U2��1��,
we obtain the following nonlinear system of equations defining
the interface velocities:

�C3�ui3 − 1��ui3 + D3 = ui2 − ui3 +
1

2
	 1

Da2
+ Re �2


�C2�ui2 − 1��ui2 + D2 = − ui2 + ui3 +
1

2
	 1

Da2
+ Re �2


�3.16�
where the various constants are as defined in the previous sec-
tions.

4 Results and Discussions
The velocity distribution in the three regions and at the inter-

face is influenced by the so called inertia parameter Re �, Rey-
nolds number Re, and the Darcy numbers Daj, j=1,2 ,3. The
effect of these parameters on the velocities for the two cases are
presented in Figs. 2–7.

In the first configuration, we first assume fix the Darcy numbers
and vary the Reynolds number Re. Precisely, we set Da1=1 and
Da2=Da3=10 and vary Re=0.5,1 ,2 ,5. The results are shown on
Fig. 2. It is clear from this figure that as Re� increases, the veloc-

ity increases. However, the flow is perfectly symmetric about the
middle region �this is expected as Da2=Da3�, and as a result the
velocities at both interface regions are the same.

In the second case of Configuration 1, we fix the Reynolds
number Re=10, Da2=Da3=10, and varied Da1=0.001,0.01,
0.5,1. The velocity profile is shown in Fig. 3, where it is clear that
the flow is still symmetric about the middle region and the veloc-
ity increases with increased Da1, as expected. The interface region
velocities still have the same values because Da2=Da3. Notice
that as Da1 tends to zero the flow velocity in the middle region
tends to zero as well.

As a third case of Configuration 1, we fix Re=10 and Da1
=10 and consider Da2�Da3. We chose Da2=0.1Da3. The effect of
changing the values of Da3 on the flow field and on the interface
velocities, in particular, is shown in Fig. 4. The flow in this case is
no longer symmetric, and therefore the values of the velocities at
the interface are not the same. The nonsymmetry is more visible
as the difference between Da2 and Da3 get larger. It can be seen
that the interface velocity at the lower region is larger since the
Darcy number Da3 is larger than Da2. It is also shown that as y
→ ��, U2 ,U3→1 very rapidly.

To investigate the effect of the difference between Da3 and Da2
on the relative values of the interface velocities, we plotted in Fig.
5 the ratio of the interface velocities ui3 /ui2 versus the ratio of the
Darcy numbers Da3 /Da2 for fixed Reynolds number Re=10 and
Da1=10. It can be seen that the relationship is not linear. From
Fig. 5, we see that even if Da3 is 100 times bigger than Da2, ui3 is
not even twice ui2.

For the second configuration, two cases are investigated: the
effect of the Reynolds number Re and the effect of different Darcy
numbers at the lower and upper regions. For the first case, we
fixed Da2=Da3=10 and varied Re=0.5, 1, 2, and 5. The flow
velocity profile is shown in Fig. 6. This figure shows that the flow
is also symmetric as in Configuration 1, but the flow is faster �as
expected� since Da1=�. In the second case, we fixed Re=10,
Da2=10, and varied Da3=1,10,100,1000. The results of this case

0.8 1 1.2 1.4 1.6 1.8 2
−3

−2

−1

0

1

2

3

4

Re =0. 5

Re =1

Re =2

Re =5

Velocity Uj

y

Fig. 2 Velocity profile for Configuration 1 with Da1=1, Da2=Da3=10. and Re=0.5,1,2,5
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are exactly the same as in Configuration 1, as shown in Fig. 7,
which again shows that the flow is not symmetric about the
middle region and the interface velocities are not the same. This
indicated that having a porous-free channel in the middle of the
two infinite porous channels does not affect the flow in a sensible
way.

5 Conclusion

In this paper we have presented a mathematical model for the
fluid flow through three porous layers. Matching conditions at the
interface regions, which is consistent with the physical conditions,
are presented. Basically, these conditions depend on the continuity

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

4
Da1 =0.001
Da1 =0.01
Da1 =0.5
Da1 =1

Velocity Uj

y

Fig. 3 Velocity profile for Configuration 1 with Da2=Da3=10, Re=10, and Da1=0.001,0.01,0.5,1
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1.5
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Fig. 4 Velocity profile for Configuration 1 with Re=10, Da1=10, Da2=10, and Da3=1,10,100,1000
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of the velocity distribution and the continuity of the shear stress.
In the two configurations considered, exact solutions were ob-
tained. The exact solutions obtained consist of exponentials for
the first configuration and exponentials and polynomials for the

second configuration. It was interestingly found that the interface
velocities did not differ by much as the Darcy numbers of the
upper and lower regions differ greatly. The effect of the Reynolds
number was observed to increase the flow velocity in the middle

1 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Da3
Da2

ui3
ui2

Fig. 5 A plot of „ui3 /ui2… versus „Da3 /Da2… for Configuration 1 with Re=10, Da1=10, Da2=10,
and Da3=10i, i=1,2, . . . ,100
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Fig. 6 Velocity profile for Configuration 2 with Da2=Da3=10, and Re=0.5,1,2,5
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region. It was also observed that when the middle region is as-
sumed to be porous-free, the velocity profile did not differ from
the first configuration.
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This paper is concerned with infinitesimally constrained equilib-
rium states, which are nonequilibrium states and infinitesimally
close to equilibrium states. The corresponding thermodynamics is
established in this paper within the thermodynamic framework of
Rice (1971, “Inelastic Constitutive Relations for Solids: An Inter-
nal Variable Theory and Its Application to Metal Plasticity,” J.
Mech. Phys. Solids, 19, pp. 433–455). It is shown that the ther-
modynamics of infinitesimally constrained equilibrium states be-
longs to linear irreversible thermodynamics. The coefficient ma-
trix is the Hessian matrix of the flow potential function at the
equilibrium state. The process of a state change induced by an
infinitesimal stress increment in time-independent plasticity can be
viewed as a sequence of infinitesimally constrained equilibrium
states. The thermodynamic counterpart of yield functions are flow
potential functions, and their convexity is required by intrinsic
dissipation inequality. Drucker and Il’yushin’s inequalities are not
essential thermodynamic requirements.
�DOI: 10.1115/1.2998484�

Keywords: thermodynamics, internal variables, equilibrium
states, Drucker’s inequality, plasticity

1 Introduction
The concept of constrained equilibrium states is essential to

irreversible thermodynamics with internal variables for solids
�see, e.g., Ref. �1��. This approach views the inelastic deformation
of a given material sample of the type considered under macro-
scopically homogeneous stress or strain and temperature as a se-
quence of constrained equilibrium states: The state of the material
sample at any given time in the deformation history can be fully
characterized by the corresponding values of stress or strain and
temperature and a collection of internal variables that represent
the extent of microstructural rearrangement within the sample. In
other words, constrained equilibrium states are nonequilibrium
states, which can be fully characterized by state variables includ-
ing internal variables. Thus, the thermostatic equation for the
variation in equilibrium states can be extended to deal with the
variation in constrained equilibrium states �see, e.g., Eq. �2��. Fur-
thermore, the thermostatic equation is generalized as the thermo-
dynamic equation by recasting the variational equation as rate
equation or by replacing � with d /dt �see, e.g., Eq. �11��.

Thermostatics is based on the assumption that the system under

study is always at or sufficiently close to an equilibrium state that
the thermodynamic potential functions �internal energy, free en-
ergy, etc.� can be defined as functions of the state variables, which
are independent of the time and independent of the history of the
system. Thus, the generalization implies an extrapolation from
infinitely slow processes to processes that proceed with arbitrary
rates and for arbitrary departures from the equilibrium states.
Needless to say, this process of extrapolation has been a point of
considerable controversy in deciding the applicability of nonequi-
librium thermodynamic results, as remarked by Edelen �2�.

This paper is concerned with the thermodynamics of infinitesi-
mally constrained equilibrium states. The constrained equilibrium
states whose state variables are located in the infinitesimal neigh-
borhood of the state variables of an equilibrium state are termed
the infinitesimally constrained equilibrium states associated with
the equilibrium state in this paper. Thermodynamic theory with
internal variables in Ref. �1� are briefed in Sec. 2. Various nonlin-
ear kinetic rate laws of internal variables including Refs. �1,3,4�
are addressed in Sec. 3. The thermodynamics of infinitesimally
constrained equilibrium states is established in the thermodynamic
framework in Ref. �1� in Sec. 4. It is shown that the second-order
variation of the entropy production function plays a dominant role
for infinitesimally constrained equilibrium states.

Basically, the time-independent plasticity is a formalism to deal
with a state change in loading induced by an infinitesimal stress or
strain increment for a material sample. The initial and final states
of the infinitesimal state change are two equilibrium states with
the stress state on the current yield surface. Since the initial and
final states are equilibrium states and the disturbance is infinitesi-
mal, it is reasonable to assume the process of the state change to
be a sequence of infinitesimally constrained equilibrium states. In
Sec. 5, some classic plastic restrictions on the state change, e.g.,
Drucker’s inequality, are addressed from the viewpoint of infini-
tesimally constrained equilibrium states. It should be noted that
the thermodynamic basis of time-independent plasticity has been
addressed by many authors �see, e.g., Refs. �1,5,4,6–14��. It is
shown that Drucker and Il’yushin’s inequalities are not essential
thermodynamic requirements. However, the convexity of yield sur-
faces is required by intrinsic dissipation inequality.

2 Thermodynamics of Constrained Equilibrium States
The irreversible thermodynamic theory by Rice �1� is a discrete

internal-variable theory for finite deformation of solids. This ap-
proach views inelastic deformation of a given material sample of
the type considered under macroscopically homogeneous stress or
strain and temperature as a sequence of constrained equilibrium
states: The state of the material sample at any given time in the
deformation history can be fully characterized by the correspond-
ing values of stress or strain and temperature and a collection of
internal variables that represent the extent of microstructural rear-
rangement within the sample.

Consider a material sample of size V, which is measured in an
unloaded reference state and at a reference temperature �0. Thus,
� or � and �, together with �, are the thermodynamic state vari-
ables. � denotes temperature, � denotes any strain tensor, objec-
tive, and symmetric, which measures deformation from an arbi-
trary reference state, � denotes the symmetric conjugate stress
such that � :d� is the work per unit volume of the adopted refer-
ence state in any virtual deformation d�, and � denotes a set of
scalar internal variables �= ��1 ,�2 . . . ,�n�, which characterizes the
specific local rearrangements at sites throughout the material
sample. Introduce the specific free energy � and its Legendre
transform � with respect to strain.

� = ���,�,��, � = ���,�,�� = �:
��

��
− � �1�

Neighboring constrained equilibrium states corresponding to
different sets of internal variables are related by
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�:�� +
1

V
f · �� + ��� = �� �2�

where � denotes the specific entropy, and f= �f1 , f2 , ¯ , fn� de-
notes the thermodynamic forces conjugate to the internal variables
� and1

f · �� = f���� �3�
Eqs. �2� and �1� lead to the following stress-strain relations.

� =
����,�,��

��
�4a�

� =
����,�,��

��
�4b�

� =
��

��
�4c�

and the following thermodynamic conjugate forces:

f� = V
��

���

= − V
��

���

, f = f��,�,�� or f = f��,�,�� �5�

Based on Eq. �4b�, a strain increment is

d� =
�2�

��2 :d� +
�2�

�� � �
d� + dp� �6�

where the inelastic part of the strain increment is

dp� = dp���,�,�� =
�2�

�� � �
· d� =

1

V

�f

��
· d� =

1

V

� f�

��
d�� �7�

Multiplying Eq. �7� by d�, one obtains

d�:dp� =
1

V
df�d�� �8�

Similarly, we have

dp� = dp���,�,�� = −
�2�

�� � �
· d� =

1

V

�f

��
· d� =

1

V

� f�

��
d�� �9�

and

d�:dp� =
1

V
df�d�� �10�

Note that df� is induced by d� in Eq. �10�, but df� is induced
by d� in Eq. �8� �see also Ref. �15��.

Nonequilibrium thermodynamics extended the thermostatic re-
lation �2� to dynamics processes with � replaced by d /dt where t
denotes time, i.e.,

�:�̇ +
1

V
f · �̇ + ��̇ = �̇ �11�

The rate equation �11� is concerned with a specific constrained
equilibrium state unlike the variational equation �2� dealing with
the neighboring constrained equilibrium states.

It is required by the second law of thermodynamics that the
entropy production function should be always non-negative.

	 =
1

�V
f��̇� =

1

�V
f · �̇ 
 0 �12�

The intrinsic dissipation inequality determines the irreversibil-
ity of the thermodynamic processes.

3 Kinetic Rate Laws of Internal Variables

The thermodynamic fluxes �̇ are state functions as their conju-
gate forces f given by Eq. �5�

�̇ = �̇��,�,�� �13�
It is usually assumed that thermodynamic fluxes are only driven

by their conjugate forces. Thus, the following kinetic rate laws of
the internal variables are postulated.

�̇ = �̇�f,�,�� �14�

or

�̇� = �̇��f,�,��, �� = 1,2, . . . ,n� �15�

The conjugate force f space is a n-dimensional Euclidean space

Rn. The gradient of the thermodynamic fluxes �̇ in f space is
denoted by

G��̇,f� = �f�̇ =
� �̇�

� f�

= G�� �16�

The kinetic rate laws should satisfy the following conditions:

f · �̇�f,�,�� 
 0, ∀ f � Rn �17�

Thermodynamic fluxes and forces vanish at equilibrium states.
Thus, equilibrium states are determined by f=0. In order to de-
scribe equilibrium states, it is required that

�̇�0,�,�� = 0 �18�

If the gradient matrix is symmetric, i.e., G��=G��, or

� �̇�

� f�

=
� �̇�

� f�

, ��,� = 1,2, . . . ,n� �19�

the symmetric condition ensures �̇�df� to be a total differential at
fixed � and �. Then a flow potential function Q as a state function
exists

Q = Q�f,�,�� =
1

V�0

f

�̇ · df =
1

V�0

f

�̇�df� �20�

where the integration is carried out at a fixed � and �. The flow
potential function is a primary function. The kinetic rate laws can
be derived from the following function:

�̇ = V
�Q

�f
or �̇� = V

�Q

� f�

�21�

The inelastic strain rate is obtained based on Eqs. �7� and �20�.

dp�

dt
=

1

V

� f�

��
�̇� =

�Q

��
�22�

The entropy production function is

	 =
1

�
f ·

�Q

�f
=

1

�
f�

�Q

� f�


 0 �23�

It is shown in Eq. �23� that the flow potential Q is a monotonic
increasing function along any ray originated from f=0. Note that
Q=0 at f=0 due to Eq. �20�. Therefore, the flow potential Q
should be always non-negative. The Hessian matrix of the flow
potential Q in f is denoted by

H�Q,f� =
�2Q

�f2 = H��
=

�2Q

� f� � f�

�24�

which is symmetric following its definition, i.e., H��=H�� or H
=HT. In view of Eqs. �16� and �21�, the following relation is
obvious:

1In this paper, Einstein’s summation convention is adopted for repeated indices.
However, if an index range is listed like � in Eq. �15�, the index is considered as a
free index without the summation convention.
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G��̇,f� = H�Q,f� or G�� = H�� �25�
The symmetric condition �19� is the so-called “nonlinear On-

sager reciprocal relations” in Ref. �3�. Some equivalent expres-
sions of the nonlinear Onsager reciprocal relations �19� are given
as follows. Evidently, the nonlinear Onsager reciprocal relations
�19� are equivalent to the following condition at every point in the
vector field:

�f � �̇ = 0 �26�

where �f� denote the curl operator in f space. Therefore, from a

fluid point of view, the Onsager fluxes �̇ represent an irrotational
or potential flow in its affinity space. The irrotational condition
�26� can be reformulated into an equivalent integral form based on
Stokes’ theorem.

� �̇ · df =� �̇�df� = 0 �27�

at a fixed � and � and for any oriented simple closed curve in f
space.

Thermodynamic fluxes �̇ satisfying the nonlinear Onsager re-
ciprocal relations are termed the “Onsager fluxes” in Ref. �2�. If

the kinetic rate laws �15� give a linear relation, i.e., �̇�=L��f�, the
well-established reciprocal relations of Onsager �16,17� L��

=L�� is reproduced from the nonlinear Onsager reciprocal rela-
tions �19�.

Rice �1� proposed the following class of kinetic rate laws: At
any given temperature and pattern of internal rearrangement
within the material sample, the rate at which any specific struc-
tural rearrangement occurs is fully determined by the thermody-
namic force associated with that rearrangement. That is,

�̇� = �̇��f�,�,��, �� = 1,2, . . . ,n� �28�
The thermodynamic fluxes satisfying Eq. �28� are termed the

Rice fluxes in this paper. Evidently, the gradient matrix and Hes-
sian matrix for the Rice fluxes are diagonal ones. The Onsager
fluxes embody the Rice fluxes as a special case since the nonlinear
Onsager reciprocal relations are fulfilled automatically for the
Rice fluxes.

Ziegler �4� proposed that the entropy production function can
also be used as a potential function to determine the kinetic rate
laws

�̇ = V
���	�

�f
�29�

which is the well-known “orthogonality condition.” Evidently, the
Ziegler fluxes given by Eq. �29� also belong to the Onsager fluxes.
Substituting Eq. �12� into Eq. �29�, the homogeneity of the kinetic
rate laws is required by the orthogonality condition.

� �̇�

� f�

f� = q�̇�, q =
1


− 1 �30�

The homogeneity �30� leads to the nonlinear phenomenological
equations

�̇� = L��f�, L�� =
1

q
H�� �31�

and the linear relation �	= �q+1�Q �see Refs. �18,19��.

4 Thermodynamics of Infinitesimally Constrained
Equilibrium States

In this paper, the values of the state variables and functions at
equilibrium states are denoted by the subscript “0.” Consider a
typical equilibrium state for a given material sample. The state
variables of the equilibrium state are ��0 ,�0 ,�0�. The thermody-
namic fluxes and forces vanish at the equilibrium state, i.e.,

�̇0 = �̇��0,�0,�0� = 0, f0 = f��0,�0,�0� = 0 �32�
Similarly, we can define other state functions at the equilibrium

state, e.g., the entropy production function 	0, the flow potential
function Q0, the gradient matrix G0, the Hessian matrix H0, etc.
The constrained equilibrium states in the infinitesimal neighbor-
hood of the equilibrium state are termed infinitesimally con-
strained equilibrium states associated with the equilibrium state in
this paper. In other words, infinitesimally constrained equilibrium
states are characterized by the state variables ��0+�	 ,�0
+�� ,�0+���. It is shown by Eqs. �5� and �32� that a thermody-
namic equilibrium point ��0 ,�0 ,�0� is the stationary point of the
specific free and complementary energies � and � with respect to
the internal variables �.

With the expansion at the equilibrium state, the thermodynamic
fluxes and forces of infinitesimally constrained equilibrium states
are infinitesimal.

�̇ = �̇0 + ��̇ = ��̇, f = f0 + �f = �f �33�

where

��̇ =
� �̇

��
:�� +

� �̇

��
:�� +

� �̇

��
:�� �34�

�f =
�f

��
:�� +

�f

��
:�� +

�f

��
:�� �35�

4.1 Entropy Production Functions. In this subsection, the
entropy production function is denoted by

	 = 	�f, �̇,�� =
1

�V
f��̇� =

1

�V
f · �̇ 
 0 �36�

where f, �̇, and � are considered to be independent variables. The
derivative of 	 with respect to f is

�	

�f
=

1

�V
�̇ �37�

The first- and second-order variations of 	 are

�	 =
1

�V
��f · �̇ + f · ��̇�, �2	 =

1

�V
�f · ��̇ �38�

at fixed �. Therefore, the entropy production function has the
following properties at the equilibrium state, in view of Eqs. �37�,
�38�, and �32�.

	0 = 0,
�	

�f
= 0, �	 = 0 �39�

The entropy production function of infinitesimally constrained
equilibrium states can be expanded to

	 = 	0 + �	 + �2	 = �2	 =
1

�V
�f · ��̇ =

1

�V
�f���̇� 
 0 �40�

at fixed � due to Eq. �39�. The variational conditions �	=0 and
�2	=0 imply that the the entropy production function 	 attains its
minimum at the equilibrium state among all infinitesimally con-

strained equilibrium states. The condition �f���̇�
0 is first pro-
posed in Ref. �19� as the convex condition of the flow potential
function.

4.2 Kinetic Rate Laws. The general kinetic rate laws �Eq.
�14�� yield

��̇ = G · �f or ��̇� = G���f� �41�

at fixed � and �. In view of Eqs. �41� and �33�, the kinetic rate
laws for infinitesimally constrained equilibrium states are ob-
tained as follows:
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��̇ = G0 · �f ⇒ �̇ = G0 · f �42�

Note that G0=H0 if G is symmetric. Thus,

��̇ = H0 · �f ⇒ �̇ = H0 · f �43�
Therefore, infinitesimally constrained equilibrium states obey

linear irreversible thermodynamics even if the kinetic rate laws
are nonlinear. The coefficient matrix is the Hessian matrix at the
equilibrium state H0.

4.3 Flow Potential Functions. In view of Eqs. �40� and �43�,

�f · ��̇ = �f · H0 · �f 
 0 �44�

at fixed �. Therefore, H0 should be positive definite and the flow
potential function is convex with respect to f at f=0. In view of
Eqs. �20� and �18�, the flow potential function has the following
properties.

Q = Q0 = 0,
�Q

�f
=

1

V
�̇ = 0 at f = 0 �45�

The first- and second-order variations of Q are

�Q =
1

V	�̇ · �f +�
0

f

��̇ · df
, �2Q =
1

V
��̇ · �f �46�

In view of Eqs. �45� and �44�,

�Q = 0, �2Q 
 0 at f = 0 �47�

Therefore, the flow potential function Q attains its minimum at
f=0. Furthermore, the flow potential function can be expanded at
f=0.

Q = Q0 + �Q + �2Q = �2Q =
1

V
�f · ��̇ =

1

V
�f���̇� 
 0 �48�

5 On Time-Independent Plasticity
The time-independent plasticity is essentially a formalism to

deal with the state change induced by an infinitesimal stress or
strain increment for a material sample. Consider a stress state �
=	ij on the current yield surface F, i.e.,

F��,�� = 0 �49�

The initial state characterized by �� ,�� is an equilibrium state
�State I�. If the equilibrium state is disturbed by an infinitesimal
stress increment d�, the disturbed state �State II� is nonequilib-
rium.

F�� + d�,�� =
�F

��
:d� � 0 �50�

The nonequilibrium will relax to a new equilibrium state �State
III�.

F�� + d�,� + d�� = 0 �51�

The plastic strain increment d�p caused by the disturbance d�
is actually accumulated during the relaxation process from State II
to State III. Since the initial and final states are equilibrium states
and the disturbance is infinitesimal, the relaxation process of the
state change can be viewed as a sequence of infinitesimally con-
strained equilibrium states. A well-known restriction on the plastic
strain increment is imposed by Ref. �20�.

d�:d�p 
 0 �52�
which requires the convexity of the yield surface and leads to an
associated flow rule.

d�p = d
�F

��
�53�

Within the framework of Rice �1�, Drucker’s inequality �52�
may be generalized as

d�:dp� 
 0 �54�
In view of Eq. �8�, the thermodynamic counterpart of Drucker’s

inequality is

df · d� = df�d�� 
 0 �55�

where df is the conjugate force at State II, but d� is accumulated
from State II to State III. Note that the intrinsic dissipation in-
equality is always imposed on a specific nonequilibrium state �see
Eq. �36��. In view of Eq. �40�, the intrinsic dissipation inequality
for a specific infinitesimal constrained equilibrium state takes the
form

df · d�̇ = df�d�̇� 
 0 �56�
Evidently, we can not derive Eq. �55� from Eq. �56�. Therefore,

Drucker’s inequality is not an essential thermodynamic require-
ment. The corollary of Drucker’s inequality—the convexity of
yield surfaces and associate flow rules—will be addressed in fol-
lowing subsections.

The issue can also be addressed in strain space. In strain space,
the initial equilibrium is characterized by �� ,��, and the distur-
bance is an infinitesimal strain increment d� and causes a plastic
stress increment dp�. A well-known restriction on the plastic
stress increment is imposed by Il’yushin �21�.

d�:dp� 
 0 �57�
In view of Eq. �10�, the thermodynamic counterpart of

Il’yushin’s restriction is also given by Eq. �55�, so it is also not an
essential thermodynamic requirement.

5.1 Convexity of Yield Surfaces. The state variables of the
initial state are �� ,� ,�� where the temperature � is fixed during
the process. The initial and final states are equilibrium states, so

Q��,�,�� = Q�� + d�,�,� + d�� = 0, Q�� + d�,�,�� 
 0

�58�

in view of Eqs. �45� and �48�. Obviously, the flow potential func-
tion can be considered as the thermodynamic counterpart of the
yield function as compared with Eqs. �49�–�51�. This viewpoint is
no doubt consistent with the statement by Rice �1�: “time-
independent inelastic behavior may be formulated by a limiting
case of the above time-dependent formulation. The yield surface
may be viewed as a singular clustering of surfaces of constant
flow potential.” Evidently, Eq. �58� also holds in strain space.

In view of Eq. �44�, the convexity of yield surfaces is required
by the intrinsic dissipation inequality. It should be noted that the
convexity is with respect to the conjugate forces rather than the
stress or strain. The convexity may be termed intrinsic convexity.

5.2 Associated Flow Rule. The normality flow rule �Eq. �22��
only holds instantly. The total inelastic strain increment accumu-
lated during the relaxation process is

dp� =�
0

�
dp�

dt
dt =�

0

�
�Q

��
dt �59�

Evidently, the relation can generally not lead to an associated
flow rule.

dp� = d
�Q

��
�60�

if Q is taken as yield functions, as mentioned before. Indeed,
associated flow rules lead to results inconsistent with experiments,
e.g., Ref. �22�.

Evidently, the associated flow rule �60� can only be achieved if
the direction of ��Q /��� or �dp� /dt� is constant during the full
relaxation process. Kuwabara et al. �23� reported significant vio-
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lations of the associated flow rule for steels and aluminum of a
different nature, following abrupt changes in strain path. Thus, the
results of Ref. �23� actually imply that the abrupt changes in strain
path will cause the abrupt changes in the inelastic strain rate dur-
ing the relaxation process.

6 Concluding Remarks
The thermodynamics of infinitesimally constrained equilibrium

states belongs to linear irreversible thermodynamics although the
prescribed kinetic rate laws of internal variables may be nonlinear.
The coefficient matrix is the Hessian matrix of the flow potential
function at the equilibrium state. The second-order variation of the
entropy production function plays a dominant role for infinitesi-
mally constrained equilibrium states.

The process of a state change induced by an infinitesimal stress
increment in time-independent plasticity can be viewed as a se-
quence of infinitesimally constrained equilibrium states. The ther-
modynamic counterpart of yield functions are flow potential func-
tions, and their convexity is required by intrinsic dissipation
inequality. Drucker and Il’yushin’s inequalities are not essential
thermodynamic requirements.
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Unsteady Free-Convection Flow on a
Vertical Oscillating Porous
Plate With Constant Heating
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In this paper, we consider the unsteady free-convection flows of a
viscous and incompressible fluid near an oscillating porous infi-
nite vertical plate (or wall) during the heating of the plate. The
governing equations are solved in closed form by the Laplace
transform technique, when the Prandtl number (Pr) of the fluid is
arbitrary and the suction (or injection) is constant. This solution
is applied for a special case of the constant heating effects from
the harmonically oscillating plate. The resulting velocity and tem-
perature are shown graphically and are also discussed for the
case of air (Pr�0.71) or water (Pr�7.0) flows.
�DOI: 10.1115/1.2998758�

Keywords: free-convection flow, oscillating plate, thermal porous
plate, exact solution

1 Introduction
Free-convection flow is encountered in cooling of nuclear reac-

tors or in the study of environmental heat transfer processes. On
the other hand from the technological point of view, the effects of
the oscillatory vertical flow on free-convection are important be-
cause it has many practical applications �1�.

The study of the problem of two-dimensional flow past an in-
finite porous plate was initiated by Lighthill �2�, when the
freestream oscillates in time about a constant mean. The corre-
sponding hydromagnetic problem was solved by Debnath �3�,
where a general solution was derived. Extensions of these prob-
lems involving unsteady free-convection flow past an infinite or
semi-infinite vertical oscillating plate were studied by various au-
thors �4–15�. In these studies, the temperature of the plate was
assumed to be constant, and when this temperature was regarded
as variable, they solved the problem under specific assumptions
�4,5,8�. Also, this oscillatory free-convection flow problem was
solved analytically by Soundalgekar �5� and Nanousis and Tokis
�6� in the absence of porosity �injection/suction�.

In the present study, we consider the unsteady flows of a vis-
cous and incompressible fluid near an infinite vertical porous os-
cillating plate in the presence of a constant porosity �injection/
suction� of this plate. This plate is initially at rest and then
suddenly oscillates harmonically with constant magnitude and fre-
quency. Also, we let the boundary condition on the temperature of
the plate to be an arbitrary time-dependent function g�t� for all
Prandtl numbers �Pr� of the fluid �16,17�. We regard that these
temperature variations in the flow field are sufficiently large so
that there is heat transfer to or from the porous plate in the flow,
but small enough so that the corresponding variations in density
and viscosity of the fluid can be neglected. A special case of g�t�

is considered when this function is equal to the step unit function
H�t�, which corresponds to the case of constant heating of the
plate �18�.

The Laplace transform method is used to solve analytically this
basic thermal boundary-layer problem in closed form. A new class
of Laplace transforms of exponential forms is encountered �17�.
Finally, the results thus obtained are discussed in Sec. 4 and the
conclusions are set out in Sec. 5.

2 Mathematical Analysis of the Problem
Let us consider the two-dimensional free-convection flow of a

viscous incompressible fluid near an infinite porous vertical plate
�or wall�. On this plate an arbitrary point was chosen as the origin
of a Cartesian coordinate system with the x� axis along the plate in
the upward direction and the y� axis normal to it. The flow is
induced either by the motion of the plate or by heating it or both.

The plate initially at rest and at a constant temperature T�� sud-
denly oscillates harmonically with constant magnitude and fre-
quency, namely, with the velocity U0 cos ��t�, in its own plane
along the x� axis. Its temperature is instantaneously increased �or
decreased� by the quantity �Tw� −T�� � g�t� for t�0. The constant
velocity U0 is the maximum velocity of the plate, ����0� is the
fixed frequency of oscillations, Tw� ��T�� � is a constant temperature
for the plate, and g�t� is an arbitrary function of nondimensional
time t �see Eq. �3a��.

The basic analysis on the physical grounds of the present oscil-
latory flow problem was made by Lighthill �2� and Soundalgekar
�4,5�. As the plate is infinite in extent, the flow is independent of
the distance parallel to the plate and, hence, the physical variables
depend on the space coordinate y� and time t� only.

Under the above assumptions and conditions with the usual
Boussinesq approximation, it can be shown that the flow is gov-
erned by the following equations.

The equation of continuity �on integration form� is

�� = constant = �0��say� �1�

where �0� is the normal velocity of suction or injection at the wall
at �0��0 or �0, respectively; �0�=0 represents the case of a non-
permeable wall.

The remaining basic equations of energy and motion are also
obtained in nondimensional form �17�

�2�

�y2 − �0 Pr
��

�y
− Pr

��

�t
= 0 �2a�

�2u

�y2 − �0
�u

�y
−

�u

�t
= − G� �2b�

where the nondimensional quantities are defined as

y = y�U0/�, t = t�U0
2/�, u = u�/U0, �0 = �0�/U0, � = ���/U0

2

�3a�
Furthermore, we have the nondimensional temperature,

� = �	� − 	�� �/�	w� − 	�� � �3b�
the Prandtl number,

Pr = 
cP/� �3c�
the Grashot number,

G = �g���	w� − 	�� �/U0
3 �3d�

where  denotes the fluid density, � the kinematic viscosity, T� the
temperature, g the acceleration due to gravity, �� the coefficient of
volume expansion, � the thermal conductivity, and cP the specific
heat at constant pressure.

Assuming that no slipping occurs between the plate and the
fluid, the appropriate initial and boundary conditions of the system
�2� of differential equations are in nondimensional form �3,17�
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u�y,0−� = 0, ��y,0−� = 0, for y � 0 �4a�

u�0,t� = cos �t, ��0,t� = g�t�, for t � 0 �4b�

u��,t� → 0, ���,t� → 0, for t � 0 �4c�

By applying the Laplace transform �with respect to the time t�
to the system �2� of differential equations, it is found that the
general solution of this system for ��y , t� and u�y , t� for t�0 is

��y,t� = L−1�ḡ�s�e−ry� �5a�

u�y,t� = ��y,t� + A�y,Pr,t� �5b�

where

A�y,Pr,t� =
G Pr

Pr − 1
L−1� ḡ�s�

r2 �e−qy − e−ry��, for Pr � 1 �6a�

A�y,1,t� = yGL−1� ḡ�s�
2q + �0

e−qy�, for Pr = 1 �6b�

with

q � �s +
1

4
�0

2	1/2

−
1

2
�0 �7a�

r � Pr1/2�s +
1

4
�0

2 Pr	1/2

−
1

2
�0 Pr �7b�

and

��y,t� = L−1� s

s2 + �2e−qy�
=

y

2�1/2ey�0/2

0

t

�−3/2e−��0
2�+y2/��/4 cos ��t − ��d� �8a�

=
1

4
e�1/2�y�0−i�t�exp�− y�1

4
�0

2 − i�	1/2�erfc� y

2t1/2

− �1

4
�0

2 − i�	1/2

t1/2� + exp�y�1

4
�0

2

− i�	1/2�erfc� y

2t1/2 + �1

4
�0

2 − i�	1/2

t1/2��
+

1

4
e�1/2�y�0+i�t�exp�− y�1

4
�0

2 + i�	1/2�erfc� y

2t1/2

− �1

4
�0

2 + i�	1/2

t1/2� + exp�y�1

4
�0

2

+ i�	1/2�erfc� y

2t1/2 + �1

4
�0

2 + i�	1/2

t1/2�� �8b�

=
1

2
e�2y�0−�0

2t−y/t�/4
n=0

�
�− 1�n

��n

2
+ 1	���

1

16
�0

4 + �2	1/2

t

+ c1y + y2/4t�n/2

cos n�1 + �� 1

16
�0

4 + �2	1/2

t − c1y

+ y2/4t�n/2

cos n�2� �8c�

with

c1,2 =
1
�2
�� 1

16
�0

4 + �2	1/2

�
1

4
�0

2�1/2

�8d�

tan �1,2 = c2t1/2/��c1t1/2 + y/2t1/2�, for 0 � �1,2 � �/2
�8e�

Now, we observe that the transformed function ḡ�s� in the ex-
pressions �5� has the known inverse function g�t�. So, we can
consider some special cases of g�t�, which prescribe physically
acceptable forms �16,17�. In Sec. 3 we demonstrate an application
of the general results �5� in the simple case g�t�=H�t�, which
corresponds to the case of constant heating of the plate.

3 Application of the General Formulation
The velocity field �cf. Eq. �5b�� consists of two parts: the first

term ��y , t� due to the oscillation of the porous plate and the
second term A�y ,Pr, t� due to the heating of this plate. The first
term ��y , t� is unaffected by g�t� and is given in Eq. �8�. Then, the
previous results �5� are applied to the simple case of constant
heating of the plate.

In this case a constant or single heating of plate corresponds to
g�t�=H�t� �with H�t� as the Heaviside unit function and ḡ�s�
=1 /s�. So, the inversions of expressions �5� and �6� give the exact
solutions for ��y , t� and u�y , t� for t�0 by

��y,t� = F�y Pr1/2,
1

2
�0 Pr1/2,t	 �9a�

u�y,t� = ��y,t� + A�y,Pr,t� �9b�

where we use the abbreviation

F�z,b,t� �
1

2
erfc�1

2
z/t1/2 − bt1/2	 +

1

2
e2zberfc�1

2
z/t1/2 + bt1/2	

�10�

The first term of the solution �9b� is given by expression �8� and
the second term A�y ,Pr, t� is obtained as follows:

A�y,Pr,t� =
G

�0
3 Pr�Pr − 1�

L−1��e−qy − e−ry��Pr
2

�0
2

r3 −
Pr �0

r2 +
1

r

−
1

r + �0 Pr
�� �11a�

=
G

�0
2�Pr − 1��exp�1

2
y�0 −

1

4
�0

2t	
�=2

3

��Ts��y,

−
1

2
�0 Pr1/2,

1

4
�0

2�Pr − 1�,t	 − exp�1

2
y�0 Pr

−
1

4
�0

2 Pr t	�
�=2

3

��Ts��y Pr1/2,−
1

2
�0 Pr1/2,0,t	��

+
G

�0
2 Pr�Pr − 1�

�F�y,
1

2
�0,t	

− F�y Pr1/2,
1

2
�0 Pr1/2,t	�, for Pr � 1 �11b�

A�y,1,t� =
yG

2�0
�erfc�1

2
y/t1/2 −

1

2
�0t1/2	 − ey�0erfc�1

2
y/t1/2

+
1

2
�0t1/2	�, for Pr = 1 �11c�

where the inverse Laplace transforms
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Ts���,k,�,t� = L−1� e−�s1/2

��s + ��1/2 + k���, � = 2,3 �12�

are expressed analytically in the work of Toki �18� and the coef-
ficients �� and �=2,3 are given by

�2 = − 1/Pr, �3 = �0/Pr1/2 �13�
Knowing the velocity field from Eq. �9�, we can now calculate

the skin friction of the flow at the wall of the porous plate. In
nondimensional form it is given by

� =
��

U0
2 =� �u

�y
�

y=0

= �� +
G

�0
2�Pr − 1��2b1 + b2e−�1/4��0

2t + b3e−�1/4��0
2 Pr t

+ b4e−�1/4��0
2tM�1,

3

2
,
1

4
�0

2�1 − Pr�t	
+ �1

2
�0 − b1	erfc�1

2
�0 Pr1/2 t1/2	 +

�0

2 Pr
erfc�1

2
�0t1/2	�

�14�

where the �� expresses the skin friction due to the harmonic mo-
tion of the oscillating plate, which is given by

�� =� ��

�y
�

y=0

= �0 cos �t −
2

�1/2e− 1
4

�0
2t� 1

t1/2 + 
n=0

�
2n+1tn+ 1

2

1 · 3 ¯ �2n + 1�� 1

16
�0

4

+ �2	 n+1
2

cos�n + 1��� �15�

with tan �=4� /�0
2 , 0���� /2. The sum of the remaining terms

at the right-hand side of Eq. �14� expresses the skin friction due to
the free-convection currents. Moreover, in Eq. �14� the
M�1,3 /2,1 /4�0

2�1−Pr�t� is the confluent hypergeometric function
and the factors bn=bn�t� and n=1,2 ,3 ,4 are defined by

b1 =
1

2
�0

2 Pr1/2�1

2
�0 Pr t�1

2
�0 Pr1/2 t + 1	 +

1

2
�0t + 1� +

1

Pr1/2

+
�0

2�2 Pr − 1��1

2
�0

3 Pr1/2 t�1

2
�0 Pr t − 1	 + �0

2 Pr1/2 t +
1

Pr1/2�
+

�0

2�2 Pr − 1�2��0
2 Pr t�Pr1/2 −

1

2
	 + Pr1/2��0 − 1� + 4 Pr + 3�

+
�0�Pr1/2 + 1�
�2 Pr − 1�3 �Pr − 1��2 Pr − 3� �16a�

b2 = � �0�1 − 1/Pr1/2�
2�2 Pr − 1�

+
1

4
�0

4t�Pr1/2 −
Pr

2 Pr − 1
	

−
�0

2

�2 Pr − 1�2 �Pr�2 Pr − 1� − Pr1/2�4 Pr − 3� − 1��� t

�
	1/2

+ �2�Pr − 1��2 Pr − 3� − 1

+
8 Pr3 − 14 Pr2 + 13 Pr + 6

�2 Pr − 1�3 � 1

��t�1/2 �16b�

b3 =
Pr − 1

Pr1/2 ��0�2 Pr2 −
1

2
Pr +

1

2 Pr1/2 −
3

2
	 + 2 Pr − 3� +

�0
2

��t�1/2

�16c�

b4 = ��Pr − 1��1

2
�0

2�Pr − 1���0 −
1

Pr
	 + 2 Pr − 3�

+
4

Pr1/2 �2 Pr + 1��� t

�
	1/2

�16d�

We can also calculate the heat transfer coefficient in terms of the
Nusselt number �14�, as follows:

Nu = x�
�T�/�y�

Tw� − T��
�17a�

Nu

Re
= q =� ��

�y
�

y=0

= −
Pr1/2

��t�1/2e−�1/4��0
2t +

1

2
�0 Pr erfc�1

2
�0 Pr1/2 t1/2	

�17b�

where Re=U0x� /� is the Reynolds number and q is the nondi-
mensional heat transfer coefficient.

4 Discussion
The general problem of the unsteady thermal free-convection

flows near an oscillating porous vertical plate was solved analyti-
cally. Its new solution was exemplified in Sec. 3 without any
restrictions.

Indeed, the Grashof number G in the general solution �5� can
take positive, zero, or negative values. Physically, G�0 corre-
sponds to an externally heated plate as the free-convection cur-
rents are carried toward the plate. Then, G�0 corresponds to an
externally cooled plate and G=0 corresponds to the absence of the
free-convection currents. The result �5b� for the velocity is re-
duced to u�y , t�=��y , t�, when G=0; in this case, the velocity is
independent of the Prandtl number �Pr� of the fluid and describes
only hydrodynamics oscillations, which decay exponentially �cf.
Eq. �8c�� �3�.

It should be pointed out that the general solution �9� includes
the case of the present problem without suction or injection at the
thermal wall and the solutions for constant heating �with g�t�
=H�t��. These results, with �0=0, are exemplified in our previous
paper �17�. In this case, the expression of the function �0�y , t� is
given in Eq. �8� with �0=0.

The present results for the case of the constant heating of the
plate include the results of Nanousis and Tokis �6� in the case of
the absence of the magnetic field and of the suction or injection at
thermal wall. The results, without suction or injection, are similar
to the results of Soundalgekar �5�.

It is worthwhile to point out that our solutions of the problem
with porosity �injection/suction� �cf. Eq. �9�� were obtained in
closed form with the Prandtl number �Pr� of the fluid different or
equal to one. Indeed, for most gases Pr is between 0.7 and 0.85,
whereas for liquids Pr is generally greater than 1; Pr�1 gives the
solution for very restricted classes of gas, namely, steam and am-
monia.

Since the present problem arose in the study of aircraft response
to atmospheric gusts, in flutter phenomena involving wings, in the
flow over helicopter rotor blades, and in turbomachinery blade
cascades �5,14�, we applied the present results of analytical solu-
tions for the case of flows of atmospheric air �Pr�0.71� or water
�Pr�7.0�.

Indeed, an application of the numerical values into the expres-
sion of the exact solution �cf. Eq. �9b�� for the case of air flow
near a single heating porous plate gives velocity profiles, which
are illustrated in Fig. 1 �see also the velocity profiles in the pre-
vious investigation �5� in the case of the nonporous plate�. We
observe that the oscillations of the porous plate will produce dis-
turbances within a fluid in which the velocity decays almost ex-
ponentially as the distance from the plate increases.

The temperature profiles are derived from Eq. �9a� and are
shown in Fig. 2 for air and water in the case of the single heating
porous vertical plate, which oscillates harmonically. It is observed

Journal of Applied Mechanics JANUARY 2009, Vol. 76 / 014503-3

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



that an increase in the time �t� leads to an increase in the tempera-
ture ��� in both cases of flows of air or water. In Fig. 2, the results
for the temperature of the water �Pr�7� near the porous plate are
smaller than those of air �Pr�0.71�.

For different values of Prandtl number �Pr�, the velocity profiles
of the flow near the single cooling �G�0� porous vertical oscil-
lating plate are shown in Fig. 3. We observe that the velocities of
all these fluids decay almost exponentially as the distance from
the oscillating porous plate increases.

5 Conclusions
A general analytical solution for the problem of the unsteady

free-convection flow near an oscillating porous vertical plate �or
wall� was determined for an arbitrary Prandtl number �Pr�.

We studied a physical example of an evaluation of the velocity
and the temperature for the cases of flows of air �Pr�0.71� or
water �Pr�7.0� near a vertical porous plate during constant heat-
ing. So, we deduce from the graphs that the oscillations of the
porous plate will produce disturbances within a fluid in which the
velocity and the temperature decay almost exponentially as the
distance from the plate increases.

Finally, we note that this work gives the exact analytical solu-
tion for the free-convection flow in an oscillating and porous plate
with constant heating problem, which—besides engineering
applications—is interested in the study of vertical air flows into
the atmosphere �1�.
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Fig. 1 Velocity profiles for the case of the air flows near the
single heating „G<0… or cooling „G>0… porous vertical plate,
which oscillates harmonically

Fig. 2 Temperature profiles for the case of the air flows „Pr
�0.71… and water flows „Pr�7… near the single heating porous
vertical plate, which oscillates harmonically

Fig. 3 Velocity profiles of the flow near the single cooling „G
>0… porous vertical oscillating plate for varying Prandtl num-
bers „Pr…
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Arches Under End Moments
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Snap-through of buckled beams or shallow arches may be utilized
in some MEMS devices. Such behavior can be induced by applied
moments at the ends. A simply-supported uniform shallow elastic
arch is analyzed. For equal end moments, the critical value is
compared for arches with a sinusoidal shape, a circular shape,
and a shape that maximizes the critical moment. For unequal
moments, the effect of the amount of loading asymmetry on the
critical value is determined for sinusoidal arches.
�DOI: 10.1115/1.3000020�

1 Introduction
Uniform shallow elastic arches with simply-supported ends are

considered. A clockwise moment is applied at the left support and
a counterclockwise moment at the right support. The moments
may be equal or unequal. Critical values for in-plane snap-through
instability are determined. Such a system may be useful for
MEMS switches or micropumps �1–3�.

In the analysis presented here, the unloaded arch is assumed to
have a sinusoidal shape. For equal moments, the problem was
treated in Ref. �4� by another procedure in which the moments
were included in the equilibrium equation and the deflection was
represented as an infinite series. Results obtained here are com-
pared with those given in Ref. �5� for equal moments acting on �i�
a circular arch and �ii� the arch shape that maximizes the critical
moment for a given arch length and span. �Out-of-plane instability
of arches subjected to end moments was investigated in Refs.
�6,7� and references cited therein.�

2 Formulation
As shown in Fig. 1, the arch has a span L and total arc length S,

and the moments at X=0 and L are �1+��M and �1−��M, respec-
tively, where � will be called the asymmetry parameter. The mo-
ments are equal if �=0. The unstrained shape of the arch is de-
noted by Yo�X� and the loaded shape is Y�X�. The arch has cross-
sectional area A, moment of inertia I, and modulus of elasticity E.

The analysis is carried out in nondimensional terms. The fol-
lowing quantities are defined:

x =
X

L
, r =� I

A
, y =

Y

2r
, yo =

Yo

2r

m =
L2M

2EIr
, �2 =

�S − L�AL

2I
�1�

The nondimensional induced thrust �2 and arch length parameter
� are given by �5�

�2 = 2�
0

1

��yo��
2 − �y��2�dx �2a�

�2 =�
0

1

�y0��
2dx �2b�

The equilibrium equation is

y��x� + �2y��x� = yo��x� �3�

The boundary conditions at x=0 are y=0 and y�−yo�= �1+��m,
and at x=1 they are y=0 and y�−yo�= �1−��m.

For the sinusoidal arch, the unstrained shape is assumed to be

yo�x� = h sin �x �4�

and Eq. �2b� yields �2=�2h2 /2.
In terms of �, the solution of Eq. �3� and the boundary condi-

tions is

y�x� = A1 sin �x + A2 cos �x + A3x + A4 +
�2h

��2 − �2�
sin �x �5�

where

A1 =
�1 + ��m cos � − �1 − ��m

�2 sin �
, A2 = −

�1 + ��m
�2

A3 = −
2�m

�2 , A4 = − A2 �6�

Equations �4� and �5� are substituted into Eq. �2a�, which leads to
a quadratic equation in m. For given values of h �or �� and �, the
solutions for m are functions of �. If the larger solution m���
exhibits a maximum between �=� and 2�, the equilibrium path
has a limit point at that value of m. If m��� has a maximum that
occurs for ��2�, the equilibrium path has a bifurcation point at
�=2� and snap-through occurs then. In both cases, the critical
moment is denoted mcr. For extremely shallow arches, there is no
critical point and the arch inverts smoothly as m is increased qua-
sistatically �i.e., there is no sudden downward jump in deflection�.

For the sinusoidal arch with equal end moments �i.e., �=0�, a
limit point occurs if 1.01�h�3.27 �2.24���7.27�, and a bifur-
cation point occurs if h�3.27 ���7.27�. In the latter case,

mcr =
4�

9
�4h + �2�8 + 9�2�h2 − 81�2� �7�

If the end moments are unequal, instability only occurs at a limit
point.

3 Numerical Results

3.1 Equal End Moments. Figure 2 shows the dependence of
mcr on the arch length parameter � for the case of equal end
moments. The lowest curve is for the sinusoidal arch, where the
height is related to the length by h= �� /���2. The curve is ob-
tained from Eq. �7� if ��7.27. In that case, the arch shape at the
onset of bifurcation is given by Eq. �5� with A1=0, �=0, and �
=2�. The arch has a slope y�=−�h /3 at x=0 just before the
central part of the arch jumps downward into an inverted configu-
ration. The corresponding nondimensional horizontal length of
each end portion that lies below the horizontal at this onset of
snap-through is 0.093 if �=10 and 0.085 if �=50.

For a circular �or parabolic� arch with height b, one can write
yo�x�=4bx�1−x� and �=4b / �3. Limit-point instability occurs if
0.96�b�2.49 �2.22���5.74�. For greater heights, mcr is asso-
ciated with bifurcation and is given by �5�
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mcr = 2�3� + 2��2�2 − 4�2 �8�

At the onset of bifurcation instability, the arch shape is

y�x� =
�m − 8b�

4�2 �1 − cos�2�x�� �9�

so that a circular arch with ��5.74 has a horizontal slope at its
ends when snap-through occurs. The middle curve in Fig. 2 gives
mcr for the circular arch. For any arch length � in Fig. 2, mcr for
the circular arch is about 10% higher than that for the sinusoidal
arch.

The top curve in Fig. 2 is for the arch shape that, for a given
arch length and span, maximizes the critical moment. The results
are taken from Ref. �5�, which utilized the procedure described in
Ref. �8�. The optimal shape depends on the value of �, and is
flatter in the central region than the sinusoidal or circular shapes.
Limit-point instability governs if 2.23���5.17. The values of
mcr for the optimal arch are about 10% higher than for the circular
arch.

3.2 Unequal End Moments. Results for the sinusoidal arch
subjected to unequal end moments are presented in Fig. 3 for

�=5 and 10. The critical moment, normalized by its value mo for
the symmetric case �=0, is plotted versus the asymmetry param-
eter � for the range 0���0.5. The value of mcr is independent of
which end of the arch is subjected to the larger moment, and the
moments are defined such that the sum of the magnitudes of the
two end moments is the same for all values of �. For unequal
moments, instability is always associated with a limit point. As the
moments are increased, a small portion of the arch near the end
with the larger moment displaces smoothly downward past the
horizontal axis, and at mcr the rest of the arch suddenly snaps
downward. At the onset of instability, the nondimensional hori-
zontal length of this portion near the end with the larger moment
for the case of �=0.5 is 0.190 if �=5, and 0.200 if �=10.

For the results in Fig. 3, mcr decreases as the asymmetry pa-
rameter � increases. The top curve corresponds to the arch length
�=5. In such cases in which the symmetric loading ��=0� leads
to limit-point instability, the curve initially has zero slope, and
therefore a small imperfection from symmetric loading has little
effect on mcr. When the symmetrically loaded arch has a bifurca-
tion point, as with the lower curve ��=10�, there is a finite nega-
tive slope at �=0, and a small asymmetric imperfection in the
applied end moments may induce a significant reduction in mcr.

In the case of bifurcation instability, this effect of an asymmet-
ric imperfection in the end moments is similar to that of a con-
centrated vertical load that is moved slightly away from the center
of a symmetric arch �9,10�. The critical value of the load de-
creases, as does the critical moment for the case of �=10 in Fig.
3. However, if a limit point occurs for the central vertical load,
then for a range of arch lengths the critical load increases if the
load is moved from the central location, whereas in Fig. 3 for �
=5, and over the whole limit-point range for symmetric loading,
mcr decreases as the loading becomes asymmetric.

Fig. 1 Schematic of the shallow arch in dimensional form

Fig. 2 Critical moment mcr versus length � for equal end moments „�=0…

Fig. 3 Normalized critical moment mcr versus the asymmetry parameter � for
the sinusoidal arch
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A three-dimensional elasticity solution for rectangular sandwich
plates exists only under restrictive assumptions on the orthotropic
material constants of the constitutive phases (i.e., face sheets and
core). In particular, only for negative or zero discriminant of the
cubic characteristic equation, which is formed from these con-
stants (case of three real roots). The purpose of the present paper
is to present the corresponding solution for the more challenging
case of positive discriminant, in which two of the roots are com-
plex conjugates. �DOI: 10.1115/1.2966174�

Introduction
Elasticity solutions are significant because they provide a

benchmark for assessing the performance of the various plate or
shell theories or the various numerical methods such as the finite
element method. For monolithic anisotropic bodies, such solutions
have been developed primarily by Lekhnitskii �1�. For laminated
composite or sandwich structures a few closed form solutions ex-
ist, namely, for a plate configuration by Pagano �2� for the two-
dimensional case and �3� for the three-dimensional case �both un-
der restrictive assumptions� and for a sandwich shell configuration
by Kardomateas �4�. The purpose of this work is to extend the
paper for the three-dimensional elastic solution by Pagano �3�.
Specifically, the material constants of each phase �layer in com-
posites or face-sheet or core in sandwich� result in a cubic char-
acteristic equation. In Ref. �3� only the case of negative discrimi-
nant of the cubic equation, which is the case of three unequal real
roots, was treated. The isotropic case, in which there are three
equal real roots, was also treated. In the present paper we present
the solution for the case of positive discriminant, which results in
two complex conjugate roots and one real root of the cubic equa-
tion. Although the case of negative discriminant is probably more
frequent with composite layers, including the transversely isotro-
pic layers �3�, the positive discriminant seems to appear frequently
in sandwich construction with orthotropic cores, in which the
stiffness in the transverse direction is greater than that of the in-
plane directions �e.g., realistic honeycomb cores as shown in the
example in the Results and Discussion section�. Therefore, the
solution given in the present paper completes Pagano’s original
work �3� for all cases of material constants.

Elasticity Formulation
We consider a sandwich plate consisting of orthotropic face-

sheets of thickness f1 and f2 and an orthotropic core of thickness
2c, such that the various axes of elastic symmetry are parallel to

the plate axes x, y, and z �Fig. 1�. The body is simply supported.
A normal traction �z=q0�x ,y� is applied on the upper surface but
the lower surface is traction-free.

Let us denote each phase by i, where i= f1 for the upper face-
sheet, i=c for the core, and i= f2 for the lower face-sheet. Then,
for each phase, the orthotropic strain-stress relations are in the
same form as in Eqs. �1� and �2� of Ref. �3�, with cij denoting the
stiffness constants. Using the strain-displacement relations and the
equilibrium relations and the simply supported plate solution for
the displacements as in Eqs. �6�–�8� of Ref. �3� results in the
following characteristic equation for a solution to exist in each of
the sandwich phases:

A0s6 + A1s4 + A2s2 + A3 = 0 �1�
where

A0 = − c33c44c55 �2a�

A1 = p2�c44�c11c33 − c13
2 � + c55�c33c66 − 2c13c44��

+ q2�c55�c22c33 − c23
2 � + c44�c33c66 − 2c23c55�� �2b�

A2 = − p4�c66�c11c33 − c13
2 � + c55�c11c44 − 2c13c66��

+ p2q2�− c11�c22c33 − c23
2 �

− 2�c12 + c66��c13 + c55��c23 + c44�

− 2c44c55c66 + 2c11c23c44 + c12c33�c12 + 2c66�

+ c13c22�c13 + 2c55�� − q4�c66�c22c33 − c23
2 �

+ c44�c22c55 − 2c23c66�� �2c�

A3 = p6c11c55c66 + p4q2�c55�c11c22 − c12
2 � + c66�c11c44 − 2c12c55��

+ p2q4�c44�c11c22 − c12
2 � + c66�c22c55 − 2c12c44�� + q6c22c44c66

�2d�
With the substitution

� = s2 �3�

Eq. �1�, which defines the parameter s, can be written in the form
of a cubic equation as

�3 + a1�2 + a2� + a3 = 0, ai = Ai/A0 �i = 1,2,3� �4�
This is what we would call the “characteristic equation” for the
elasticity solution. Let

Q =
3a2 − a1

2

9
, R =

9a1a2 − 27a3 − 2a1
3

54
, D = Q3 + R2 �5�

The last quantity, D, is the discriminant and determines the nature
of the solution. If D�0, then all roots are real and unequal. This
case was treated by Pagano �3�. We consider next the case of
positive discriminant, which has not yet been treated.

Solution for Positive Discriminant
If D�0, then the cubic equation �4� has one real root and two

complex conjugates.
With R and D defined in Eq. �5�, we further define

S = �3 R + �D, T = �3 R − �D �6a�

Then if

�R = − 1
2 �S + T� −

a1

3
, �I = 1

2
�3�S − T� �6b�

the two complex conjugate roots are

�1 = �R + i�I, �2 = �R − i�I �6c�
The real root is
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�3 = S + T −
a1

3
�6d�

We will consider how to deal with the complex conjugate roots
first. In terms of the modulus r and amplitude � of these complex
numbers,

r = ��R
2 + �I

2, � = arctan� �I

�R
� �6e�

these roots can be set in the form

�1 = r�cos � + i sin ��, �2 = r�cos � − i sin �� �6f�

From Eq. �3�, we seek now the square roots of the �is. Thus, in
terms of

�1 = �r cos
�

2
, �2 = �r sin

�

2
�6g�

the corresponding roots of the sixth order equation �7�, si, are

s1,2 = � ��1 + i�2�, s3,4 = � ��1 − i�2� �6h�
Corresponding to these four roots, the displacement functions

take the form

U	�z� = a1	e�1z cos �2z + a2	e�1z sin �2z + a3	e−�1z cos �2z

+ a4	e−�1z sin �2z, 	 = u,v,w �7�

where 	=u ,v ,w corresponds to the U, V, W displacements and
the a1	 are constants. Of the 12 constants appearing in Eq. �7�
only 4 are independent. The eight relations that exist among these
constants are found by substituting the displacements along with
Eqs. �6�–�8� of Ref. �3� into the equilibrium Eq. �3� of Ref. �3�.

For convenience, let us set

r1 = c44��1
2 + �2

2� + c66p2 + c22q
2 �8a�

r2 = c44��1
2 + �2

2� − c66p2 − c22q
2 �8b�

r3 = c55��1
2 + �2

2� + c11p2 + c66q
2 �8c�

r4 = c55��1
2 + �2

2� − c11p2 − c66q
2 �8d�

and

e1 = r1�c13 + c55� − q2�c12 + c66��c23 + c44� �8e�

e2 = r2�c13 + c55� + q2�c12 + c66��c23 + c44� �8f�

e3 = r3�c23 + c44� − p2�c12 + c66��c13 + c55� �8g�

e4 = r4�c23 + c44� + p2�c12 + c66��c13 + c55� �8h�
In this way, we obtain the following relations for the coeffi-

cients in the displacement expression for V�z�, Eq. �7�, in terms of
the coefficients in the expression for U�z�:

a1v = 
11a1u + 
12a2u, a2v = 
21a1u + 
22a2u �9a�

a3v = 
33a3u + 
34a4u, a4v = 
43a3u + 
44a4u �9b�
where


11 = 
22 = 
33 = 
44 =
q�e1e3�2

2 + e2e4�1
2�

p��2
2e1

2 + �1
2e2

2�
�9c�


12 = − 
21 = − 
34 = 
43 =
q�1�2�e2e3 − e1e4�

p��2
2e1

2 + �1
2e2

2�
�9d�

Also, the following relations for the coefficients in the expres-
sion for W�z�, Eq. �7�, in terms of the coefficients in the expres-
sion for U�z�:

a1w = f11a1u + f12a2u, a2w = f21a1u + f22a2u �10a�

a3w = f33a3u + f34a4u, a4w = f43a3u + f44a4u �10b�
where

f11 = f22 = − f33 = − f44 =
�c12 + c66�pq�1 − r2�1
11 − r1�2
21

q�c23 + c44���1
2 + �2

2�
�10c�

f12 = − f21 = f34 = − f43 = −
�c12 + c66�pq�2 + r2�1
12 + r1�2
22

q�c23 + c44���1
2 + �2

2�
�10d�

Now, coming to the real root �3 of Eq. �4�, this is treated in the
same manner as in Ref. �3�, i.e., if we set

m3 = ���3� �11�

then, if �3�0, the corresponding two roots of Eq. �1� are s5,6
= � im3 and the corresponding displacements can be set in the
form

U	�z� = a5	 cos m3z + a6	 sin m3z, 	 = u,v,w �12�

Fig. 1 Definition of the geometrical and loading configuration for the sandwich plate
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If �3�0 then s5,6= �m3 and in an analogous fashion, we can
set

U	�z� = a5	 cosh m3z + a6	 sinh m3z, 	 = u,v,w �13�
Again, of the six unknown constants in Eq. �12� and �13� only

two are independent and the four relations among them are found
again by substituting these expressions into Eqs. �6�–�8� and �3� of
Ref. �3�.

Hence, if we consider as independent the constants a1u, a2u,
a3u, a4u, a5u, and a6u, which we rename for convenience as g1, g2,
g3, g4, g5, and g6, respectively, the displacement U�z� is in the
form

U�z� = du1g1 + du2g2 + du3g3 + du4g4 + du5g5 + du6g6 �14�

with the z-dependent coefficients defined as

du1 = e�1z cos �2z, du2 = e�1z sin �2z �15a�

du3 = e−�1z cos �2z, du4 = e−�1z sin �2z �15b�

du5 = 	cos m3z if �3 � 0

cosh m3z if �3 � 0

 �15c�

du6 = 	sin m3z if �3 � 0

sinh m3z if �3 � 0

 �15d�

Similar expressions can be found for V�z�, W�z�, and the
stresses.

From this analysis, we can see that within each phase �i�, where
i= f1 ,c , f2, there are six constants: gj

�i�, j=1, . . . ,6. Therefore, for
the three phases, this gives a total of 18 constants to be deter-
mined.

There are three traction conditions at each of the two core/face-
sheet interfaces, giving a total of six conditions. In a similar fash-
ion, there are three displacement continuity conditions at each of
the two core/face-sheet interfaces, giving another six conditions.
Finally, there are three traction boundary conditions on each of the
two plate bounding surfaces, giving another six conditions, for a
total of 18 equations.

Results and Discussion
As an illustration of the above, let us consider a sandwich plate

with unidirectional graphite/epoxy faces and hexagonal glass/
phenolic honeycomb core. Such sandwich construction is quite
common in the aerospace/rotorcraft industry. The orthotropic
graphite/epoxy facing moduli are �in gigapascals� as follows: E1

f

=181.0, E2
f =E3

f =10.3, G23
f =5.96, and G12

f =G31
f =7.17 and facing

Poisson’s ratios are as follows: �12
f =�13

f =0.277 and �32
f =0.400.

The orthotropic honeycomb core moduli are �in gigapascals� as
follows: E1

c =E2
c =0.032, E3

c =0.300, G23
c =G31

c =0.048, and G12
c

=0.013 and core’s Poisson’s ratios are as follows: �12
c =�32

c =�31
c

=0.25. The thickness of each face-sheet is f1= f2=2 mm and the
core 2c=16 mm. The plate is square with a=b=10htot, where htot
is the total thickness of the plate. We further assume that a trans-
verse loading is applied at the top face-sheet of the form repre-
sented by Eq. �25� of Ref. �3�, and in the definition of p and q in
Eq. �7� of Ref. �3�, we further assume m=n=1, i.e., the applied
loading is in the form q0�x ,y�=� sin��x /a�sin��y /b�.

Substituting the corresponding constants leads to the following
�s:

Face-sheets, D�0, therefore two complex conjugate roots and
one real root:

�1
f = 342.5 + i316.3, �2

f = 342.5 − i316.3, �3
f = 6150.2

Core, D�0, therefore again two complex conjugate roots and one
real root:

�1
c = 158.9 + i49.2, �2

c = 158.9 − i49.2, �3
c = 131.6

Since for both the face-sheet and the core we have positive
discriminant, the formulas for the coefficients in the expressions
of the displacements and stresses given in the present paper are
applicable. Note that if one of the phases had a negative discrimi-
nant, then we would have to use the corresponding formulas in
Ref. �3�.

The solution is determined by imposing the following:

�a� three traction conditions at the lower face-sheet/core in-
terface:

�zz
�c� = �zz

�f2�, yz
�c� = yz

�f2� and xz
�c� = xz

�f2� at z = − c

�b� three displacement continuity conditions at the lower
core/face-sheet interfaces:

U�c� = U�f2�, V�c� = V�f2� and W�c� = W�f2� at z = − c

�c� three analogous traction conditions at the upper face-
sheet/core interface, z= +c

�d� three analogous displacement continuity conditions at the
upper face-sheet/core interface, z= +c

�e� three traction-free conditions at the lower bounding sur-
face:

�zz = 0, yz = 0 and xz = 0 at z = − �c + f2�
and finally,

�f� three traction conditions at the upper bounding surface
where the transverse load q0 is applied:

�zz = q0, yz = 0 and xz = 0 at z = �c + f1�

Therefore, we have a system of 18 linear algebraic equations in
the 18 unknowns, gj

�f2�, gj
�c�, and gj

�f1�, j=1,6.
The resulting transverse displacement w at the top, i.e., at z

=c+ f1, and at y=b /2 is shown in Fig. 2. In this figure, we also
show the predictions of the simple classical plate theory �5,6�,
which does not include transverse shear.

Furthermore, the resulting displacement profile from the first
order core shear theory �based on the shear being carried exclu-
sively by the core� �5,6� is also shown in Fig. 2. It can be seen that
the classical plate is too nonconservative and very inaccurate. Fur-
thermore, the first order shear is too conservative and also quite
inaccurate �although considerably better than the classical plate�.
Figure 3 shows the corresponding displacement profiles for a plate
five times longer, i.e., with a=b=50htot. We can see that for this
case of larger ratio of length over thickness, the classical and first
order shear theories come closer to the elasticity, as expected; the

Fig. 2 Transverse displacement, W, at the top face-sheet and
at y=b /2 as a function of x for a=b=10htot

Journal of Applied Mechanics JANUARY 2009, Vol. 76 / 014505-3

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



classical plate is still quite inaccurate but much less so with the
first order shear. These figures demonstrate clearly the large effect
of transverse shear, which is an important feature of sandwich
structures.

Summary
A three-dimensional elasticity solution for a rectangular sand-

wich plate with positive discriminant orthotropic phases is pre-
sented. This is a case frequently encountered in realistic sandwich
construction. The solution is closed form. This work completes
Pagano’s original work �3�, which was done for the negative dis-
criminant orthotropic phases and for the isotropic phases.
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An examination of the effect of Poisson’s ratio on stress distribu-
tion is important to interpret the results of a stress-strain analysis
by using experimental methods because the material of the model
frequently has a different Poisson’s ratio from that of the proto-
type. In linear elasticity, the effect of Poisson’s ratio on three-
dimensional stress distribution is theoretically explained for sim-
ply connected bodies by using static methods in this study. It is
proven that the stress components are independent from Poisson’s
ratio in sections of the body where the stress components arising
are in equilibrium only with surface tractions. This result is useful
in interpreting three-dimensional photoelasticity and other experi-
ments and even in guiding the design. �DOI: 10.1115/1.2966218�

Keywords: experimental research, linear elasticity, Poisson’s
ratio, stress distribution

1 Introduction
Model and prototype, in general, have different Poisson’s ratios

when stress states of the structures are investigated in the models
via experimental methods. The character of Poisson’s ratio’s effect
on stress state must be known so that obtained results in the mod-
els could be correctly used in order to evaluate the strength of the
prototype. It is known that the effect of this difference is not
significant for the investigation of some two-dimensional prob-
lems of simply connected bodies �1,2�. In other cases, in multiply
connected plane problems, this effect can be taken into account by
the dislocation method �2�. In the general case of three-
dimensional elasticity problems, the effect of Poisson’s ratio on
stress state cannot be disregarded. Different methods have been
proposed in order to evaluate the effect of Poisson’s ratio in the
stress state of three-dimensional elasticity problems. Westergaard
proposed a method to determine the necessary corrections for the
prototypes using the results obtained for the solution of the prob-
lem for a specific value of Poisson’s ratio �3�. However, the value
of the shear modulus is considered to be equal for the materials of
prototype and model in this method. In another study �4�, it is
proposed to follow the operations to determine the corrections
with a different priority from that of the method presented by
Westergaard. Another proposal states that the influence of Pois-

son’s ratio on stress state can be determined by taking into ac-
count the application of the surface N= ���m−�n�/
��1+�m��1−2�n����m and body Xi= ���m−�n�/��1+�m��1−2�n���
��m /�xi forces �5�. These forces are determined using stress com-
ponents obtained in the relevant model, where �m=�xx+�yy +�zz,
the sum of the normal stress components in a point of the model,
xi is the coordinate of a point, and �m and �n denote the Poisson’s
ratios of the materials of the model and prototype, respectively. In
a different work, it is shown that the difference between the solu-
tions of elastic problems for two distinct Poisson’s ratios is similar
to a certain problem of thermoelasticity �6�. An experimental
method, based on the application of three models set from the
materials having different Poisson’s ratios ��1, �2, and �3�, is also
proposed to evaluate the effect of Poisson’s ratio on stress state in
the application of the method of 3D photoelasticity �7�. The ap-
plication of this method is not practical because it is too difficult
to find three optically sensitive materials having different Pois-
son’s ratios for the freezing method of 3D photoelasticity. The
suggested methods above have theoretical and experimental re-
strictions for practical applications because they create new diffi-
culties that are not only practical but also analytical.

The effect of Poisson’s ratio on stress state depends on the
character of examined problems since Poisson’s ratio enters the
equations of theory of elasticity as a parameter. Therefore, the
peculiarity of the effect of Poisson’s ratio on stress state is not
decisively known for three-dimensional elasticity problems for a
general case. Known exact solutions of problems of the theory of
elasticity are the rational functions of Poisson’s ratio, such as �,
�1−��, �1+��, �1−�2�, � / �1+��, and �1−2��, etc. It is clear that
the degree of the effect of this ratio in the examined problems
depends on the appearance of the expression involving it.

The problem mathematically appears as the effect of a param-
eter, �, on the general solution of the system of differential equa-
tions of elasticity. The parameter’s effect may be different depend-
ing on the geometry of the examined structures, boundary
conditions, and character of acting loads for each class of the
problems. It may be said that it is impossible to determine the
character of the mentioned effect using mathematical transforma-
tions of the differential equations of the linear theory of elasticity
for a general case.

In this study, the effect of Poisson’s ratio on stress state is
investigated using static methods for linear elasticity problems of
simply connected bodies under consideration without any body
force. As is known, simply considering surface loads is enough for
practical applications in the investigation of the main part of elas-
ticity problems.

An examination of available exact solutions of three-
dimensional problems of elasticity in literature �8–15� indicates
that analytical expressions of stress components can be grouped
according to Poisson’s ratio as

�ij = f ij�x1,x2,x3, . . . � + �ij����ij�x1,x2,x3, . . . � �1�

where x1 ,x2, and x3 are coordinates of a point, f ij and �ij are the
functions constituting the terms not involving Poisson’s ratio, �ij
is the multiplier expression containing only Poisson’s ratio as a
variable, and indices i and j=1,2 ,3.

2 Theorem
The components of stress appearing in the section of simply

connected bodies subjected to the surface loads, if only in equi-
librium with the system of external forces, are independent Pois-
son’s ratio.

Let us examine the three-dimensional stress state problem of
two bodies, which have the same geometry and are subjected to
the identical surface loads. However, Poisson’s ratios of their ma-
terials, �1 and �2 are different only.
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It is understood that analytical expressions of stress components
��ij

I and �ij
II� arising in the compared bodies are only different

according to the indices of Poisson’s ratios

�ij
I = FI�x1,x2,x3,�1, . . . �

�2�
�ij

II = FII�x1,x2,x3,�2, . . . �
The expressions of stress components, Eq. �2�, can be separated in
to two groups, taking Eq. �1� into consideration �including Pois-
son’s ratio in terms or not�, as follows:

�ij
I = f ij�x1,x2,x3, . . . � + �ij��1��ij�x1,x2,x3, . . . �

�3�
�ij

II = f ij�x1,x2,x3, . . . � + �ij��2��ij�x1,x2,x3, . . . �
Writing the equilibrium equations for the relevant parts of the
bodies, taking into consideration the stresses arising in the identi-
cal sections �A-A, Fig. 1�, leads to the following formulation:

�
j=1

3 �
S

�3j
I dS + �

k=1

n

P3k = 0

�4�

�
j=1

3 �
S

�3j
II dS + �

k=1

n

P3k = 0

where �3j
I and �3j

II indicate the stresses arising in the sections of
the bodies, S is the area of the section, and �k=1

n P3k �k
=1,2 , . . . ,n� is the sum of projections of the external loads to the
relevant axis. It is possible to write taking into consideration equi-
librium equations, Eq. �4�, as

�
j=1

3 �
S

�3j
I dS = �

j=1

3 �
S

�3j
II dS �5�

Equation �5� can be expressed using Eq. �3�, as follows:

�
j=1

3 �
S

f3j�x1,x2,x3, . . . �dS + �
j=1

3 �
S

�3j��1��3j�x1,x2,x3, . . . �dS

=�
j=1

3 �
S

f3j�x1,x2,x3, . . . �dS + �
j=1

3 �
S

�3j��2��3j�x1,x2,x3, . . . �dS

This expression yields

�
j=1

3 �
S

�3j��1��3j�x1,x2,x3, . . . �dS

= �
j=1

3 �
S

�3j��2��3j�x1,x2,x3, . . . �dS

Differentiating this equality with respect to dS leads to

�3j��1��3j�x1,x2,x3, . . . � = �3j��2��3j�x1,x2,x3, . . . � �6�

To satisfy equality �6�, the function �3j�x1 ,x2 ,x3 , . . . � characteriz-
ing the effect of Poisson’s ratio on stress state should be zero
because multiplier expressions �3j��1� and �3j��2� are unequal
constants. That is, Poisson’s ratios do not affect arising stresses in
the examined sections.

3 Conclusions
The aforesaid theorem allows us to explain the effect of Pois-

son’s ratio on stress distribution for the known exact solutions of
three-dimensional linear problems of the theory of elasticity for
surface loads. In the solution of “sphere subjected to uniform
pressure,” stress components at any section are in equilibrium
with the external forces. Moreover, it is seen that analytical ex-
pressions of stress components of this problem do not contain
Poisson’s ratio, as stated in the theorem. Similarly, in the solutions
of problems of “related to semi-infinite” Boussinesq �10� and
Love �8� �see the Appendix�, the analytical expressions of stress
components, arising where the sections are parallel to the bound-
ary plane, do not even contain Poisson’s ratio because the stress
components arising in the sections are in equilibrium with the
external forces. The examination of the three-dimensional prob-
lems of linear elasticity having exact solutions �8–15� shows that
analytical expressions of stress components arising in the sections,

Fig. 1 Compared bodies
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which correspond to the conditions indicated by the theorem, do
not contain Poisson’s ratio. This theorem enables the application
of the results, obtained in the models with different experimental
methods, to the prototypes more accurately.

Appendix
The Stress Components for a Semi-Infinite Solid by Pressure on

Part of the Boundary
The formulations are

�xx =
1

2�
	 �

� + 	

�V

�z
−

	

� + 	

�2


�x2 − z
�2V

�x2 

�yy =

1

2�
	 �

� + 	

�V

�z
−

	

� + 	

�2


�y2 − z
�2V

�y2 

�xy = −

1

2�
	 	

� + 	

�2


�x�y
+ z

�2V

�x�y



�zz =
1

2�
	 �V

�z
− z

�2V

�z2 

�zy = −

1

2�
z

�2V

�y�z

�zx = −
1

2�
z

�2V

�x�z

where � and 	 are Lamé’s elastic constants for the material of
solid, and 
 and V are the potentials of Boussinesq’s three-
dimensional logarithmic and Newtonian, respectively, defined as
follows:


 =�� p log�z + r�dx�dy�

and

V =�� pr−1dx�dy�

x, y, and z are the coordinates of a point within the solid,
�x� ,y� ,0� to be those of a point on the plane boundary, r denotes

the distance between these points, which is given as follows:

r2 = �x − x��2 + �y − y��2 + z2

and p is the applied pressure on the plane boundary of the semi-
infinite solid, which is a function of x� and y�.

It is apparent from the above expressions that the terms of the
stress components ��zx ,�zy ,�zz�—arising in the sections parallel
to the boundary plane—which are in equilibrium with the external
forces, do not include Poisson’s ratio.
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1 Introduction
In this interesting paper �1�, a concentrated load was applied to

the clamped-free annular plate. The problem domain was divided
into two parts by the cylindrical section where a concentrated load
was applied. The author used the Trefftz method �2� to construct
the homogeneous solution

u = �
m=0

�

Rm�r�cos m� �1�

in each part. By substituting Eq. �1� into the governing equation,
the author could determine Rm�r�. Mathematically speaking, the
series in Eq. �1� can be seen as the summation of Trefftz bases. To
simulate the concentrated force, a circularly distributed force us-
ing the Fourier series is used. Then, the author utilized two bound-
ary conditions �BCs� in each part, two continuity, and two equi-
librium conditions on the interface to determine the eight
unknown coefficients. Variation of deflection coefficients, radial
moment coefficients, and shear coefficients along radial positions
and angles was presented. However, some results are misleading.
To investigate these inconsistencies, both null-field integral for-
mulation and finite element method �FEM� using the ABAQUS are
adopted to revisit this problem. In addition, two unclear issues in
Ref. �1� are discussed. One is the simulation of concentrated load
and the other is the operator of shear force.

2 Concentrated Load
In Adewale’s paper �1�, the author expanded the concentrated

load to the Fourier series

P � P�1

2
+ �

k=1

� 2 sin
�2k − 1��

2

�2k − 1��
cos�2k − 1���, 0 � � �

�

2

�2�
By summing up the series of Eq. �2�, the result converges to 1 as
shown in Fig. 1, which does not show the behavior of the Dirac-
delta function. The Dirac-delta function ��x� should satisfy the
identity as follows:

	
−�

�

��x�dx = 1 �3�

Equation �2� cannot satisfy Eq. �3� such that the strength of the
concentrated loading is 1. The author seems to improperly trans-
form the concentrated load to a circularly distributed one. If this
load is distributed along an angle from 0 to � /2, the results of the
deflection coefficient in Fig. 5 of Ref. �1� would be untrue.

3 Definition of Shear Force
For the clamped-free annular plate problems as shown in Fig. 2,

the shear force on the inner circle is zero for the free boundary.
Therefore, the author obtained the shear force


� �3

�r3 −
1

r2

�

�r
+

1

r

�2

�r2 −
m2

r2

�

�r
�Rm�r�


r=a

= 0 shear force free

�4�
According to the displacement of Eq. �1� and the definition of
shear force operator in Szilard’s book �3�, the shear force can be
derived as

�3Rm�r�
�r3 −

1

r2

�Rm�r�
�r

+
1

r

�2Rm�r�

�r2 +
2m2

r3 Rm�r�

−
m2

r2

�Rm�r�
�r

+ �1 − ��m2

r3 Rm�r� −
m2

r2

�Rm�r�
�r

� for shear force

�5�

where � is the Poisson ratio. Equation �4� is unreasonable since it
does not involve the Poisson ratio. In literature, many articles had
reported the definition of shear force operator, e.g., Refs. �1–5�.
We summarized the shear force operators in Table 1. After careful
comparison, Adewale’s shear force operator differs from the oth-
ers and consequently, this difference may cause inconsistent re-
sults.

4 Alternative Derivation of the Analytical Solution Us-
ing the Null-Field Integral Formulation

The first boundary integral equations for the domain point can
be derived from the Rayleigh–Green identity as follows �5,6�:

8�u�x� = U��,x� −	
B

U�s,x�v�s�dB�s� +	
B

��s,x�m�s�dB�s�

−	
B

M�s,x���s�dB�s� +	
B

V�s,x�u�s�dB�s�, x

� 	 � B �6�

where B is the boundary of the domain 	; u�x�, ��x�, m�x�, and
v�x� are the displacement, slope, normal moment, and effective
shear force; and s and x are the source point and field point,
respectively. The kernel function U�s ,x� in Eq. �6� is the funda-
mental solution that satisfies

�4U�s,x� = 8���s − x� �7�
Therefore, the fundamental solution can be obtained as follows:
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U�s,x� = r2 ln r �8�

where r is the distance between the source point s and field point
x. The relationship among u�x�, ��x�, m�x�, and v�x� is shown as
follows:

��x� = K�,x�u�x�� =
�u�x�
�nx

�9�

m�x� = Km,x�u�x�� = ��x
2u�x� + �1 − ��

�2u�x�
�2nx

�10�

v�x� = Kv,x�u�x�� =
��x

2u�x�
�nx

+ �1 − ��
�

�tx
 �

�nx
� �u�x�

�tx
�� �11�

where K�,x�·�, Km,x�·�, and Kv,x�·� are the slope, moment, and shear
force operators with respect to the point x; � /�nx is the normal
derivative with respect to the field point x; � /�tx is the tangential
derivative with respect to the field point x; and �x

2 is the Laplacian
operator. The first null-field integral equations can be derived by
moving the field point x outside the domain as follows:

0 = U��,x� −	
B

U�s,x�v�s�dB�s� +	
B

��s,x�m�s�dB�s�

−	
B

M�s,x���s�dB�s� +	
B

V�s,x�u�s�dB�s�, x � 	C � B

�12�

where 	C is the complementary domain of 	. For the kernel
function U�s ,x�, it can be expanded in terms of degenerate kernel
�2,5–7� in a series form as shown below:

U�s,x� =�
UI�R,�;
,�� = 
2�1 + ln R� + R2 ln R − R
�1 + 2 ln R� +

1

2


3

R
�cos�� − ��

− �
m=2

�  1

m�m + 1�

m+2

Rm −
1

m�m − 1�

m

Rm−2�cos�m�� − ���, R � 


UE�R,�;
,�� = R2�1 + ln 
� + 
2 ln 
 − 
R�1 + 2 ln 
� +
1

2

R3



�cos�� − ��

− �
m=2

�  1

m�m + 1�
Rm+2


m −
1

m�m − 1�
Rm


m−2�cos�m�� − ���, 
  R

� �13�

Fig. 1 Simulation of a concentrated force by Adewale’s †1‡
„M=101….

Fig. 2 Problem statement of an annular plate

Table 1 The definitions of the shear force „a… Szilard, „b…
Leissa, „c… the present operator, and „d… Adewale

�a� Szilard �3�

−D� �

�r
�r

2u+
1−�

r

�

�� �1

r

�2u

�r��
−

1

r2

�u

�� ��
�b� Leissa �4�

−D
�

�r
��2u�+

1

r

�

�� �−D�1−��
�

�r �1

r

�u

�� ��
�c� Present operator �5�

��x
2u

�nx
+ �1−��

�

�tx
� �

�nx
� �u

�tx
��

�d� Adewale �1�

�3Rm

�r3 −
1

r2

�Rm

�r
+

1

r

�2Rm

�r2 −
m2

r2

�Rm

�r
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where the superscripts I and E denote the interior and exterior
cases of U�s ,x� kernel depending on the location of s and x. For
the annular plate clamped at the outer edge and free at the inner
edge, the unknown Fourier coefficients of m, v on the outer
boundary and u, � on the inner boundary can be expanded to

v�s� = a0 + �
n=1

M

�an cos n� + bn sin n��, s � outer boundary

�14�

m�s� = ā0 + �
n=1

M

�ān cos n� + b̄n sin n��, s � outer boundary

�15�

��s� = p0 + �
n=1

M

�pn cos n� + qn sin n��, s � inner boundary

�16�

u�s� = p̄0 + �
n=1

M

�p̄n cos n� + q̄n sin n��, s � inner boundary

�17�

where a0, an, bn, ā0, ān, b̄n, p0, pn, qn, p̄0, p̄n, and q̄n are the
Fourier coefficients, and M is the number of Fourier series terms
in real computation. By substituting all the Fourier coefficients of
boundary densities and boundary conditions, the displacement
field can be obtained as shown below:

8�u�x� = U��,x� −	
B

U�s,x�a0 + �
n=1

M

�an cos n� + bn sin n���dB�s� +	
B

��s,x�ā0 + �
n=1

M

�ān cos n� + b̄n sin n���dB�s� −	
B

M�s,x�

�p0 + �
n=1

M

�pn cos n� + qn sin n���dB�s� +	
B

V�s,x� p̄0 + �
n=1

M

�p̄n cos n� + q̄n sin n���dB�s�, x � 	 � B �18�

where an, bn, ān, b̄n, pn, qn, p̄n, and q̄n �n=0,1 ,2 , . . . � are solved
in Ref. �7�.

5 Results and Discussions
In order to verify the accuracy of Adewale’s results, two alter-

natives, null-field approach and FEM using ABAQUS, are em-
ployed to revisit the annular problem. A concentrated load was
applied at the radial center of the annular plate, as shown in Fig. 2.
For the clamped-free boundary condition, Figs. 3�a� and 3�b�

show the displacement contours for the Green’s function by using
FEM �ABAQUS� and the present method, respectively. Good agree-
ment is obtained between our analytical solution and FEM result
although Adewale �1� did not provide the displacement contour of
his analytical solution. For comparison with the available results
in Ref. �1�, Fig. 4 shows the variation of deflection coefficients,
moment coefficients, and shear force coefficients along radial po-
sitions or angles for different inner radii. It is also found that FEM
results match well with our solution but deviates from Adewale’s
outcome �1�.

(b)

(a)

Fig. 3 Contour plots of the Green’s function for the annular problem „a=0.4, b=1.0, R�=0.7, D=1, �=0.3…. „a… Dis-
placement contour by using the FEM „ABAQUS…. „b… Displacement contour by using the present method „M=50….
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6 Concluding Remarks
To verify the accuracy of Adewale’s results and to examine the

response of the clamped-free annular plate subjected to a concen-
trated load, the null-field integral formulation was employed in
solving this problem. The transverse displacement, moment, and
shear force along the radial positions and angles for different inner
radii were determined by using the present method in comparison
with the ABAQUS data. Good agreements between our analytical
results and those of ABAQUS were made but deviated from Ade-
wale’s data. The outcome of Adewale’s results may not be correct.
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Erratum: “Stability Analysis of an Inflatable Vacuum Chamber”
†Journal of Applied Mechanics, 2008, 75„4…, p. 041010‡

Page 3, 2nd column, 9th line: “E�cos�� /2�” should read “E��cos �� /2.”
Page 3, 2nd column, 10th line: “��sin�� /2�” should read “���sin �� /2.”
Page 3, 2nd column, 13th line: “−�SC+2�RQ�” should read “�−SC+2�RQ�.”
Page 4, 1st column, 2nd line: “the dagger denotes” should read “where the dagger denotes.”
Page 7, last line of “Nomenclature”: “E�cos�� /2�” should read “E��cos �� /2.”
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